Grounding Continuous Representations in Geometry: Equivariant Neural Fields
- URL: http://arxiv.org/abs/2406.05753v4
- Date: Fri, 04 Oct 2024 15:00:24 GMT
- Title: Grounding Continuous Representations in Geometry: Equivariant Neural Fields
- Authors: David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, Erik J Bekkers,
- Abstract summary: We propose a novel CNF architecture which uses a geometry-informed cross-attention to condition the NeF on a geometric variable.
We show that this approach induces a steerability property by which both field and latent are grounded in geometry.
We validate these main properties in a range of tasks including classification, segmentation, forecasting and reconstruction.
- Score: 26.567143650213225
- License:
- Abstract: Conditional Neural Fields (CNFs) are increasingly being leveraged as continuous signal representations, by associating each data-sample with a latent variable that conditions a shared backbone Neural Field (NeF) to reconstruct the sample. However, existing CNF architectures face limitations when using this latent downstream in tasks requiring fine grained geometric reasoning, such as classification and segmentation. We posit that this results from lack of explicit modelling of geometric information (e.g. locality in the signal or the orientation of a feature) in the latent space of CNFs. As such, we propose Equivariant Neural Fields (ENFs), a novel CNF architecture which uses a geometry-informed cross-attention to condition the NeF on a geometric variable, a latent point cloud of features, that enables an equivariant decoding from latent to field. We show that this approach induces a steerability property by which both field and latent are grounded in geometry and amenable to transformation laws: if the field transforms, the latent representation transforms accordingly - and vice versa. Crucially, this equivariance relation ensures that the latent is capable of (1) representing geometric patterns faitfhully, allowing for geometric reasoning in latent space, (2) weight-sharing over similar local patterns, allowing for efficient learning of datasets of fields. We validate these main properties in a range of tasks including classification, segmentation, forecasting and reconstruction, showing clear improvement over baselines with a geometry-free latent space.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Shape-informed surrogate models based on signed distance function domain encoding [8.052704959617207]
We propose a non-intrusive method to build surrogate models that approximate the solution of parameterized partial differential equations (PDEs)
Our approach is based on the combination of two neural networks (NNs)
arXiv Detail & Related papers (2024-09-19T01:47:04Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Topological Obstructions and How to Avoid Them [22.45861345237023]
We show that local optima can arise due to singularities or an incorrect degree or winding number.
We propose a new flow-based model that maps data points to multimodal distributions over geometric spaces.
arXiv Detail & Related papers (2023-12-12T18:56:14Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Relative representations enable zero-shot latent space communication [19.144630518400604]
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations.
We show how neural architectures can leverage these relative representations to guarantee, in practice, latent isometry invariance.
arXiv Detail & Related papers (2022-09-30T12:37:03Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
We introduce a general, unified model for geometric scattering on measure spaces.
We consider finite measure spaces that are obtained from randomly sampling an unknown manifold.
We propose two methods for constructing a data-driven graph on which the associated graph scattering transform approximates the scattering transform on the underlying manifold.
arXiv Detail & Related papers (2022-08-17T22:40:09Z) - Representing Deep Neural Networks Latent Space Geometries with Graphs [38.63434325489782]
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks.
In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems.
arXiv Detail & Related papers (2020-11-14T17:21:29Z) - Geodesics in fibered latent spaces: A geometric approach to learning
correspondences between conditions [62.997667081978825]
This work introduces a geometric framework and a novel network architecture for creating correspondences between samples of different conditions.
Under this formalism, the latent space is a fiber bundle stratified into a base space encoding conditions, and a fiber space encoding the variations within conditions.
arXiv Detail & Related papers (2020-05-16T03:14:52Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs)
We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
arXiv Detail & Related papers (2020-03-11T17:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.