MaintaAvatar: A Maintainable Avatar Based on Neural Radiance Fields by Continual Learning
- URL: http://arxiv.org/abs/2502.02372v1
- Date: Tue, 04 Feb 2025 14:52:34 GMT
- Title: MaintaAvatar: A Maintainable Avatar Based on Neural Radiance Fields by Continual Learning
- Authors: Shengbo Gu, Yu-Kun Qiu, Yu-Ming Tang, Ancong Wu, Wei-Shi Zheng,
- Abstract summary: We propose a maintainable avatar based on neural radiance fields by continual learning.
Our model requires only limited data collection to quickly fine-tune the model.
- Score: 35.95916601030043
- License:
- Abstract: The generation of a virtual digital avatar is a crucial research topic in the field of computer vision. Many existing works utilize Neural Radiance Fields (NeRF) to address this issue and have achieved impressive results. However, previous works assume the images of the training person are available and fixed while the appearances and poses of a subject could constantly change and increase in real-world scenarios. How to update the human avatar but also maintain the ability to render the old appearance of the person is a practical challenge. One trivial solution is to combine the existing virtual avatar models based on NeRF with continual learning methods. However, there are some critical issues in this approach: learning new appearances and poses can cause the model to forget past information, which in turn leads to a degradation in the rendering quality of past appearances, especially color bleeding issues, and incorrect human body poses. In this work, we propose a maintainable avatar (MaintaAvatar) based on neural radiance fields by continual learning, which resolves the issues by utilizing a Global-Local Joint Storage Module and a Pose Distillation Module. Overall, our model requires only limited data collection to quickly fine-tune the model while avoiding catastrophic forgetting, thus achieving a maintainable virtual avatar. The experimental results validate the effectiveness of our MaintaAvatar model.
Related papers
- LightAvatar: Efficient Head Avatar as Dynamic Neural Light Field [58.93692943064746]
We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs)
LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering.
arXiv Detail & Related papers (2024-09-26T17:00:02Z) - GenCA: A Text-conditioned Generative Model for Realistic and Drivable Codec Avatars [44.8290935585746]
Photo-realistic and controllable 3D avatars are crucial for various applications such as virtual and mixed reality (VR/MR), telepresence, gaming, and film production.
Traditional methods for avatar creation often involve time-consuming scanning and reconstruction processes for each avatar.
We propose a text-conditioned generative model that can generate photo-realistic facial avatars of diverse identities.
arXiv Detail & Related papers (2024-08-24T21:25:22Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
We propose Relightable Neural Actor, a new video-based method for learning a pose-driven neural human model that can be relighted.
For training, our method solely requires a multi-view recording of the human under a known, but static lighting condition.
To evaluate our approach in real-world scenarios, we collect a new dataset with four identities recorded under different light conditions, indoors and outdoors.
arXiv Detail & Related papers (2023-12-18T14:30:13Z) - Text-Conditional Contextualized Avatars For Zero-Shot Personalization [47.85747039373798]
We propose a pipeline that enables personalization of image generation with avatars capturing a user's identity in a delightful way.
Our pipeline is zero-shot, avatar texture and style agnostic, and does not require training on the avatar at all.
We show, for the first time, how to leverage large-scale image datasets to learn human 3D pose parameters.
arXiv Detail & Related papers (2023-04-14T22:00:44Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars.
We leverage the SMPL model to provide shape and pose guidance for the generation.
We also jointly optimize the losses computed from the full body and from the zoomed-in 3D head to alleviate the common multi-face ''Janus'' problem.
arXiv Detail & Related papers (2023-04-03T12:11:51Z) - DINAR: Diffusion Inpainting of Neural Textures for One-Shot Human
Avatars [7.777410338143783]
We present an approach for creating realistic rigged fullbody avatars from single RGB images.
Our method uses neural textures combined with the SMPL-X body model to achieve photo-realistic quality of avatars.
In the experiments, our approach achieves state-of-the-art rendering quality and good generalization to new poses and viewpoints.
arXiv Detail & Related papers (2023-03-16T15:04:10Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.