LightAvatar: Efficient Head Avatar as Dynamic Neural Light Field
- URL: http://arxiv.org/abs/2409.18057v2
- Date: Thu, 7 Nov 2024 04:49:24 GMT
- Title: LightAvatar: Efficient Head Avatar as Dynamic Neural Light Field
- Authors: Huan Wang, Feitong Tan, Ziqian Bai, Yinda Zhang, Shichen Liu, Qiangeng Xu, Menglei Chai, Anish Prabhu, Rohit Pandey, Sean Fanello, Zeng Huang, Yun Fu,
- Abstract summary: We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs)
LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering.
- Score: 58.93692943064746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have shown that neural radiance fields (NeRFs) on top of parametric models have reached SOTA quality to build photorealistic head avatars from a monocular video. However, one major limitation of the NeRF-based avatars is the slow rendering speed due to the dense point sampling of NeRF, preventing them from broader utility on resource-constrained devices. We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs). LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering. The proposed approach, while being conceptually appealing, poses a significant challenge towards real-time efficiency and training stability. To resolve them, we introduce dedicated network designs to obtain proper representations for the NeLF model and maintain a low FLOPs budget. Meanwhile, we tap into a distillation-based training strategy that uses a pretrained avatar model as teacher to synthesize abundant pseudo data for training. A warping field network is introduced to correct the fitting error in the real data so that the model can learn better. Extensive experiments suggest that our method can achieve new SOTA image quality quantitatively or qualitatively, while being significantly faster than the counterparts, reporting 174.1 FPS (512x512 resolution) on a consumer-grade GPU (RTX3090) with no customized optimization.
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space [25.24509617548819]
We introduce a novel framework for 3D human avatar generation and personalization, leveraging text prompts.
Key innovations are aimed at overcoming the challenges in photo-realistic avatar synthesis.
arXiv Detail & Related papers (2024-04-01T17:59:11Z) - One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation [31.310769289315648]
This paper introduces a novel approach to create high quality head avatar utilizing only a single or a few images per user.
We learn a generative model for 3D animatable photo-realistic head avatar from a multi-view dataset of expressions from 2407 subjects.
Our method demonstrates compelling results and outperforms existing state-of-the-art methods for few-shot avatar adaptation.
arXiv Detail & Related papers (2024-02-19T07:48:29Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - EfficientNeRF: Efficient Neural Radiance Fields [63.76830521051605]
We present EfficientNeRF as an efficient NeRF-based method to represent 3D scene and synthesize novel-view images.
Our method can reduce over 88% of training time, reach rendering speed of over 200 FPS, while still achieving competitive accuracy.
arXiv Detail & Related papers (2022-06-02T05:36:44Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - HeadNeRF: A Real-time NeRF-based Parametric Head Model [39.240265611700735]
HeadNeRF is a novel NeRF-based parametric head model that integrates the neural radiance field to the parametric representation of the human head.
It can render high fidelity head images in real-time, and supports directly controlling the generated images' rendering pose and various semantic attributes.
arXiv Detail & Related papers (2021-12-10T16:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.