Lower Bounds for Chain-of-Thought Reasoning in Hard-Attention Transformers
- URL: http://arxiv.org/abs/2502.02393v1
- Date: Tue, 04 Feb 2025 15:14:01 GMT
- Title: Lower Bounds for Chain-of-Thought Reasoning in Hard-Attention Transformers
- Authors: Alireza Amiri, Xinting Huang, Mark Rofin, Michael Hahn,
- Abstract summary: Chain-of-thought reasoning and scratchpads have emerged as critical tools for enhancing the computational capabilities of transformers.
In this work, we initiate the study of systematic lower bounds for the number of CoT steps across different algorithmic problems.
- Score: 5.4649464326326
- License:
- Abstract: Chain-of-thought reasoning and scratchpads have emerged as critical tools for enhancing the computational capabilities of transformers. While theoretical results show that polynomial-length scratchpads can extend transformers' expressivity from $TC^0$ to $PTIME$, their required length remains poorly understood. Empirical evidence even suggests that transformers need scratchpads even for many problems in $TC^0$, such as Parity or Multiplication, challenging optimistic bounds derived from circuit complexity. In this work, we initiate the study of systematic lower bounds for the number of CoT steps across different algorithmic problems, in the hard-attention regime. We study a variety of algorithmic problems, and provide bounds that are tight up to logarithmic factors. Overall, these results contribute to emerging understanding of the power and limitations of chain-of-thought reasoning.
Related papers
- On the Role of Depth and Looping for In-Context Learning with Task Diversity [69.4145579827826]
We study in-context learning for linear regression with diverse tasks.
We show that multilayer Transformers are not robust to even distributional shifts as small as $O(e-L)$ in Wasserstein distance.
arXiv Detail & Related papers (2024-10-29T03:27:56Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Chain of Thought Empowers Transformers to Solve Inherently Serial Problems [57.58801785642868]
Chain of thought (CoT) is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks.
This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness.
arXiv Detail & Related papers (2024-02-20T10:11:03Z) - The Expressive Power of Transformers with Chain of Thought [29.839710738657203]
In practice, transformers can be improved by allowing them to use a "chain of thought" or "scratchpad"
We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation.
Our results also imply that linear steps keep transformer decoders within context-sensitive languages.
arXiv Detail & Related papers (2023-10-11T22:35:18Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
We investigate the limits of transformer large language models across three representative compositional tasks.
These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer.
Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching.
arXiv Detail & Related papers (2023-05-29T23:24:14Z) - Towards Revealing the Mystery behind Chain of Thought: A Theoretical
Perspective [39.47116013338394]
Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs)
We show that CoT can handle a general class of decision-making problems known as Dynamic Programming.
arXiv Detail & Related papers (2023-05-24T17:59:21Z) - Transformers Learn Shortcuts to Automata [52.015990420075944]
We find that a low-depth Transformer can represent the computations of any finite-state automaton.
We show that a Transformer with $O(log T)$ layers can exactly replicate the computation of an automaton on an input sequence of length $T$.
We further investigate the brittleness of these solutions and propose potential mitigations.
arXiv Detail & Related papers (2022-10-19T17:45:48Z) - The Parallelism Tradeoff: Limitations of Log-Precision Transformers [29.716269397142973]
We prove that transformers whose arithmetic precision is logarithmic in the number of input tokens can be simulated by constant-depth logspace-uniform threshold circuits.
This provides insight on the power of transformers using known results in complexity theory.
arXiv Detail & Related papers (2022-07-02T03:49:34Z) - On the Power of Saturated Transformers: A View from Circuit Complexity [87.20342701232869]
We show that saturated transformers transcend the limitations of hard-attention transformers.
The jump from hard to saturated attention can be understood as increasing the transformer's effective circuit depth by a factor of $O(log n)$.
arXiv Detail & Related papers (2021-06-30T17:09:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.