Towards Fast Graph Generation via Autoregressive Noisy Filtration Modeling
- URL: http://arxiv.org/abs/2502.02415v1
- Date: Tue, 04 Feb 2025 15:35:25 GMT
- Title: Towards Fast Graph Generation via Autoregressive Noisy Filtration Modeling
- Authors: Markus Krimmel, Jenna Wiens, Karsten Borgwardt, Dexiong Chen,
- Abstract summary: Graph generative models often face a critical trade-off between learning complex distributions and achieving fast generation speed.<n>We introduce Autoregressive Noisy filtration Modeling (ANFM), a novel approach that addresses both challenges.<n>ANFM produces remarkably short sequences, achieving a 100-fold speedup in generation time compared to diffusion models.
- Score: 12.737028324709609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph generative models often face a critical trade-off between learning complex distributions and achieving fast generation speed. We introduce Autoregressive Noisy Filtration Modeling (ANFM), a novel approach that addresses both challenges. ANFM leverages filtration, a concept from topological data analysis, to transform graphs into short sequences of monotonically increasing subgraphs. This formulation extends the sequence families used in previous autoregressive models. To learn from these sequences, we propose a novel autoregressive graph mixer model. Our experiments suggest that exposure bias might represent a substantial hurdle in autoregressive graph generation and we introduce two mitigation strategies to address it: noise augmentation and a reinforcement learning approach. Incorporating these techniques leads to substantial performance gains, making ANFM competitive with state-of-the-art diffusion models across diverse synthetic and real-world datasets. Notably, ANFM produces remarkably short sequences, achieving a 100-fold speedup in generation time compared to diffusion models. This work marks a significant step toward high-throughput graph generation.
Related papers
- Fast Autoregressive Models for Continuous Latent Generation [49.079819389916764]
Autoregressive models have demonstrated remarkable success in sequential data generation, particularly in NLP.
Recent work, the masked autoregressive model (MAR) bypasses quantization by modeling per-token distributions in continuous spaces using a diffusion head.
We propose Fast AutoRegressive model (FAR), a novel framework that replaces MAR's diffusion head with a lightweight shortcut head.
arXiv Detail & Related papers (2025-04-24T13:57:08Z) - Make Autoregressive Great Again: Diffusion-Free Graph Generation with Next-Scale Prediction [0.0]
We propose MAG, a novel diffusion-free graph generation framework based on next-scale prediction.
By leveraging a hierarchy of latent representations, the model progressively generates scales of the entire graph without the need for explicit node ordering.
Experiments on both generic and molecular graph datasets demonstrate that MAG delivers competitive performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-03-30T22:30:34Z) - Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.
Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks.
scaling them to large graphs is challenging due to the high computational and storage costs.
We present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works.
arXiv Detail & Related papers (2024-12-19T07:48:14Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Directional diffusion models for graph representation learning [9.457273750874357]
We propose a new class of models called it directional diffusion models
These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process.
We conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks.
arXiv Detail & Related papers (2023-06-22T21:27:48Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiff is a non-autoregressive diffusion model that achieves high-quality time series prediction.
We show that TimeDiff consistently outperforms existing time series diffusion models.
arXiv Detail & Related papers (2023-06-08T08:53:59Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGress is a discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
It achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement.
It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules.
arXiv Detail & Related papers (2022-09-29T12:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.