Make Autoregressive Great Again: Diffusion-Free Graph Generation with Next-Scale Prediction
- URL: http://arxiv.org/abs/2503.23612v1
- Date: Sun, 30 Mar 2025 22:30:34 GMT
- Title: Make Autoregressive Great Again: Diffusion-Free Graph Generation with Next-Scale Prediction
- Authors: Samuel Belkadi, Steve Hong, Marian Chen,
- Abstract summary: We propose MAG, a novel diffusion-free graph generation framework based on next-scale prediction.<n>By leveraging a hierarchy of latent representations, the model progressively generates scales of the entire graph without the need for explicit node ordering.<n>Experiments on both generic and molecular graph datasets demonstrate that MAG delivers competitive performance compared to state-of-the-art methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoregressive models are popular generative models due to their speed and properties. However, they require an explicit sequence order, which contradicts the unordered nature of graphs. In contrast, diffusion models maintain permutation invariance and enable one-shot generation but require up to thousands of denoising steps and additional features, leading to high computational costs. Inspired by recent breakthroughs in image generation-especially the success of visual autoregressive methods-we propose MAG, a novel diffusion-free graph generation framework based on next-scale prediction. By leveraging a hierarchy of latent representations, the model progressively generates scales of the entire graph without the need for explicit node ordering. Extensive experiments on both generic and molecular graph datasets demonstrate that MAG delivers competitive performance compared to state-of-the-art methods, achieving up to three orders of magnitude in speedup during inference.
Related papers
- Learning-Order Autoregressive Models with Application to Molecular Graph Generation [52.44913282062524]
We introduce a variant of ARM that generates high-dimensional data using a probabilistic ordering that is sequentially inferred from data.
We demonstrate experimentally that our method can learn meaningful autoregressive orderings in image and graph generation.
arXiv Detail & Related papers (2025-03-07T23:24:24Z) - Towards Fast Graph Generation via Autoregressive Noisy Filtration Modeling [12.737028324709609]
Graph generative models often face a critical trade-off between learning complex distributions and achieving fast generation speed.<n>We introduce Autoregressive Noisy filtration Modeling (ANFM), a novel approach that addresses both challenges.<n>ANFM produces remarkably short sequences, achieving a 100-fold speedup in generation time compared to diffusion models.
arXiv Detail & Related papers (2025-02-04T15:35:25Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - Autoregressive Diffusion Model for Graph Generation [12.390149720274904]
We propose an emphautoregressive diffusion model for graph generation.
Unlike existing methods, we define a node-absorbing diffusion process that operates directly in the discrete graph space.
Our experiments on six diverse generic graph datasets and two molecule datasets show that our model achieves better or comparable generation performance with previous state-of-the-art.
arXiv Detail & Related papers (2023-07-17T21:21:18Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGress is a discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
It achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement.
It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules.
arXiv Detail & Related papers (2022-09-29T12:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.