mPOLICE: Provable Enforcement of Multi-Region Affine Constraints in Deep Neural Networks
- URL: http://arxiv.org/abs/2502.02434v1
- Date: Tue, 04 Feb 2025 15:58:12 GMT
- Title: mPOLICE: Provable Enforcement of Multi-Region Affine Constraints in Deep Neural Networks
- Authors: Mohammadmehdi Ataei, Hyunmin Cheong, Adrian Butscher,
- Abstract summary: Deep neural networks are increasingly employed in fields such as climate modeling, robotics, industrial control, where strict output constraints must be upheld.
We present mPOLICE, which assigns a distinct pattern to each region, and affine behavior locally while overreaching into other parts of the input domain.
We formulate a layer-wise problem that both the weights and biases to assign unique activation patterns to each region, ensuring that constraints are met without conflicts.
- Score: 0.0
- License:
- Abstract: Deep neural networks are increasingly employed in fields such as climate modeling, robotics, and industrial control, where strict output constraints must be upheld. Although prior methods like the POLICE algorithm can enforce affine constraints in a single convex region by adjusting network parameters, they struggle with multiple disjoint regions, often leading to conflicts or unintended affine extensions. We present mPOLICE, a new method that extends POLICE to handle constraints imposed on multiple regions. mPOLICE assigns a distinct activation pattern to each constrained region, preserving exact affine behavior locally while avoiding overreach into other parts of the input domain. We formulate a layer-wise optimization problem that adjusts both the weights and biases to assign unique activation patterns to each convex region, ensuring that constraints are met without conflicts, while maintaining the continuity and smoothness of the learned function. Our experiments show the enforcement of multi-region constraints for multiple scenarios, including regression and classification, function approximation, and non-convex regions through approximation. Notably, mPOLICE adds zero inference overhead and minimal training overhead.
Related papers
- Diffusion Predictive Control with Constraints [51.91057765703533]
Diffusion predictive control with constraints (DPCC)
An algorithm for diffusion-based control with explicit state and action constraints that can deviate from those in the training data.
We show through simulations of a robot manipulator that DPCC outperforms existing methods in satisfying novel test-time constraints while maintaining performance on the learned control task.
arXiv Detail & Related papers (2024-12-12T15:10:22Z) - Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints [8.784438985280094]
We study problems as pure exploration in multi-armed bandits with unknown linear constraints.
First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints.
Second, we leverage the Lagrangian lower bound and the properties of convex to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX.
arXiv Detail & Related papers (2024-10-24T15:26:14Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Constrained Empirical Risk Minimization: Theory and Practice [2.4934936799100034]
We present a framework that allows the exact enforcement of constraints on parameterized sets of functions such as Deep Neural Networks (DNNs)
We focus on constraints that are outside the scope of equivariant networks used in Geometric Deep Learning.
As a major example of the framework, we restrict filters of a Convolutional Neural Network (CNN) to be wavelets, and apply these wavelet networks to the task of contour prediction in the medical domain.
arXiv Detail & Related papers (2023-02-09T16:11:58Z) - DRIP: Domain Refinement Iteration with Polytopes for Backward
Reachability Analysis of Neural Feedback Loops [12.706980346861986]
This work investigates backward reachability as a framework for providing collision avoidance guarantees for systems controlled by neural network (NN) policies.
Because NNs are typically not invertible, existing methods assume a domain over which to relax the NN, which causes loose over-approximations of the set of states.
We introduce DRIP, an algorithm with a refinement loop on the relaxation domain, which substantially tightens the BP set bounds.
arXiv Detail & Related papers (2022-12-09T03:06:58Z) - Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks [59.419152768018506]
We show that any optimal policy necessarily satisfies the k-SP constraint.
We propose a novel cost function that penalizes the policy violating SP constraint, instead of completely excluding it.
Our experiments on MiniGrid, DeepMind Lab, Atari, and Fetch show that the proposed method significantly improves proximal policy optimization (PPO)
arXiv Detail & Related papers (2021-07-13T21:39:21Z) - Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via
Trust Region Decomposition [52.06086375833474]
Non-stationarity is one thorny issue in multi-agent reinforcement learning.
We introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence.
We propose a trust region decomposition network based on message passing to estimate the joint policy divergence.
arXiv Detail & Related papers (2021-02-21T14:46:50Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z) - Reinforcement Learning for POMDP: Partitioned Rollout and Policy
Iteration with Application to Autonomous Sequential Repair Problems [2.6389022766562236]
We consider infinite horizon discounted dynamic programming problems with finite state and control spaces, and partial state observations.
We discuss an algorithm that uses multistep lookahead, truncated rollout with a known base policy, and a terminal cost function approximation.
arXiv Detail & Related papers (2020-02-11T02:38:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.