Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
- URL: http://arxiv.org/abs/2502.02494v2
- Date: Thu, 13 Feb 2025 05:14:49 GMT
- Title: Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
- Authors: Dylan Sam, Ayan Chakrabarti, Afshin Rostamizadeh, Srikumar Ramalingam, Gui Citovsky, Sanjiv Kumar,
- Abstract summary: Similarity between training examples is used to curate pretraining datasets for language models.
This paper introduces a framework to analyze the suitability of embedding models specifically for data curation in the language model pretraining setting.
- Score: 45.802146203273196
- License:
- Abstract: Similarity between training examples is used to curate pretraining datasets for language models by many methods -- for diversification and to select examples similar to high-quality data. However, similarity is typically measured with off-the-shelf embedding models that are generic or trained for tasks such as retrieval. This paper introduces a framework to analyze the suitability of embedding models specifically for data curation in the language model pretraining setting. We quantify the correlation between similarity in the embedding space to similarity in pretraining loss between different training examples, and how diversifying in the embedding space affects pretraining quality. We analyze a variety of embedding models in our framework, with experiments using the Pile dataset for pretraining a 1.7B parameter decoder-only language model. We find that the embedding models we consider are all useful for pretraining data curation. Moreover, a simple approach of averaging per-token embeddings proves to be surprisingly competitive with more sophisticated embedding models -- likely because the latter are not designed specifically for pretraining data curation. Indeed, we believe our analysis and evaluation framework can serve as a foundation for the design of embedding models that specifically reason about similarity in pretraining datasets.
Related papers
- The interplay between domain specialization and model size: a case study in the legal domain [8.653321928148547]
We investigate the interplay between domain and model size during continual pre-training under compute-constrained scenarios.
Our goal is to identify a compute-efficient training regime for this scenario.
As model size increases, the compute-effectiveness gap between specialized and general models widens.
arXiv Detail & Related papers (2025-01-03T19:28:53Z) - Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Scalable Data Ablation Approximations for Language Models through Modular Training and Merging [27.445079398772904]
We propose an efficient method for approximating data ablations which trains individual models on subsets of a training corpus.
We find that, given an arbitrary evaluation set, the perplexity score of a single model trained on a candidate set of data is strongly correlated with perplexity scores of parameter averages of models trained on distinct partitions of that data.
arXiv Detail & Related papers (2024-10-21T06:03:49Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
Understanding memorisation in language models has practical and societal implications.
Memorisation is the causal effect of training with an instance on the model's ability to predict that instance.
This paper proposes a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics.
arXiv Detail & Related papers (2024-06-06T17:59:09Z) - Data Similarity is Not Enough to Explain Language Model Performance [6.364065652816667]
Similarity measures correlate with language model performance.
Similarity metrics are not correlated with accuracy or even each other.
This suggests that the relationship between pretraining data and downstream tasks is more complex than often assumed.
arXiv Detail & Related papers (2023-11-15T14:48:08Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel
Data [4.550919471480445]
We develop a data-driven smoothing technique for high-dimensional and non-linear panel data models.
The weights are determined by a data-driven way and depend on the similarity between the corresponding functions.
We conduct a simulation study which shows that the prediction can be greatly improved by using our estimator.
arXiv Detail & Related papers (2019-12-30T09:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.