論文の概要: Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
- arxiv url: http://arxiv.org/abs/2502.02508v1
- Date: Tue, 04 Feb 2025 17:26:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:23.129313
- Title: Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
- Title(参考訳): 佐取:自己回帰探索によるLLM推論の強化学習
- Authors: Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gregory Wornell, Subhro Das, David Cox, Chuang Gan,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
- 参考スコア(独自算出の注目度): 57.28671084993782
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models will be fully open-sourced.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
これは典型的には、外部のLCM検証器によって導かれる推論時間で広範囲にサンプリングされる。
外部からのガイダンスにもかかわらず、このシステムの有効性は、複雑なタスクに対処するための単一のLLMの可能性を示している。
したがって、我々は新しい研究課題を提起する: 単一のLSMの推論能力を根本的に向上させるために、探索能力を内部化できるだろうか?
本研究は、自己回帰探索のための後学習LSM(すなわち、自己回帰と新たな戦略の自己探索を伴う拡張推論過程)に焦点を当てた直交方向を探索する。
これを実現するために、我々は2段階の訓練パラダイムであるCOAT推論(Chain-of-Action-Thought)を提案する。
1)COAT推論フォーマットを内部化する小規模のフォーマットチューニングステージ
2)強化学習を活用した大規模自己改善段階。
当社のアプローチでは,オープンソースモデルとデータに基づいてトレーニングされた7B LLMであるSatoriが実現しています。
大規模な経験的評価は、佐取が数学推論ベンチマークで最先端のパフォーマンスを達成しつつ、領域外タスクへの強い一般化を示していることを示している。
コード、データ、モデルは、完全にオープンソースになる。
関連論文リスト
- Enhancing Reasoning through Process Supervision with Monte Carlo Tree Search [2.1637240640145343]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な能力を示している。
LLMの推論能力を改善するために、プロセスの監督は結果の監督よりも優れていることが証明されている。
本研究では,モンテカルロ木探索(MCTS)を用いてLLM自体を用いてプロセス監視データを生成する。
論文 参考訳(メタデータ) (2025-01-02T12:09:17Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。