Classroom Simulacra: Building Contextual Student Generative Agents in Online Education for Learning Behavioral Simulation
- URL: http://arxiv.org/abs/2502.02780v1
- Date: Tue, 04 Feb 2025 23:42:52 GMT
- Title: Classroom Simulacra: Building Contextual Student Generative Agents in Online Education for Learning Behavioral Simulation
- Authors: Songlin Xu, Hao-Ning Wen, Hongyi Pan, Dallas Dominguez, Dongyin Hu, Xinyu Zhang,
- Abstract summary: We run a 6-week education workshop from N = 60 students to collect fine-grained data using a custom built online education system.
We propose a transferable iterative reflection (TIR) module that augments both prompting-based and finetuning-based large language models.
- Score: 10.209326669619273
- License:
- Abstract: Student simulation supports educators to improve teaching by interacting with virtual students. However, most existing approaches ignore the modulation effects of course materials because of two challenges: the lack of datasets with granularly annotated course materials, and the limitation of existing simulation models in processing extremely long textual data. To solve the challenges, we first run a 6-week education workshop from N = 60 students to collect fine-grained data using a custom built online education system, which logs students' learning behaviors as they interact with lecture materials over time. Second, we propose a transferable iterative reflection (TIR) module that augments both prompting-based and finetuning-based large language models (LLMs) for simulating learning behaviors. Our comprehensive experiments show that TIR enables the LLMs to perform more accurate student simulation than classical deep learning models, even with limited demonstration data. Our TIR approach better captures the granular dynamism of learning performance and inter-student correlations in classrooms, paving the way towards a ''digital twin'' for online education.
Related papers
- LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - EduAgent: Generative Student Agents in Learning [15.215078619481732]
Student simulation in online education is important to address dynamic learning behaviors of students with diverse backgrounds.
Existing simulation models based on deep learning usually need massive training data, lacking prior knowledge in educational contexts.
This work proposes EduAgent, a novel generative agent framework incorporating cognitive prior knowledge.
arXiv Detail & Related papers (2024-03-23T18:19:17Z) - Leveraging generative artificial intelligence to simulate student
learning behavior [13.171768256928509]
We explore the feasibility of using large language models (LLMs) to simulate student learning behaviors.
Unlike conventional machine learning based prediction, we leverage LLMs to instantiate virtual students with specific demographics.
Our objective is not merely to predict learning outcomes but to replicate learning behaviors and patterns of real students.
arXiv Detail & Related papers (2023-10-30T00:09:59Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles.
Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently.
We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm.
arXiv Detail & Related papers (2023-03-03T21:55:04Z) - Generalisable Methods for Early Prediction in Interactive Simulations
for Education [5.725477071353353]
Classifying students' interaction data in the simulations based on their expected performance has the potential to enable adaptive guidance.
We first measure the students' conceptual understanding through their in-task performance.
Then, we suggest a novel type of features that, starting from clickstream data, encodes both the state of the simulation and the action performed by the student.
arXiv Detail & Related papers (2022-07-04T14:46:56Z) - Dynamic Contrastive Distillation for Image-Text Retrieval [90.05345397400144]
We present a novel plug-in dynamic contrastive distillation (DCD) framework to compress image-text retrieval models.
We successfully apply our proposed DCD strategy to two state-of-the-art vision-language pretrained models, i.e. ViLT and METER.
Experiments on MS-COCO and Flickr30K benchmarks show the effectiveness and efficiency of our DCD framework.
arXiv Detail & Related papers (2022-07-04T14:08:59Z) - Integrating Machine Learning with HPC-driven Simulations for Enhanced
Student Learning [0.0]
We develop a web application that supports both HPC-driven simulation and the ML surrogate methods to produce simulation outputs.
The evaluation of the tool via in-classroom student feedback and surveys shows that the ML-enhanced tool provides a dynamic and responsive simulation environment.
arXiv Detail & Related papers (2020-08-24T22:48:21Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
arXiv Detail & Related papers (2020-03-11T17:55:15Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.