論文の概要: OpenSTARLab: Open Approach for Spatio-Temporal Agent Data Analysis in Soccer
- arxiv url: http://arxiv.org/abs/2502.02785v1
- Date: Wed, 05 Feb 2025 00:14:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:27:06.094503
- Title: OpenSTARLab: Open Approach for Spatio-Temporal Agent Data Analysis in Soccer
- Title(参考訳): OpenSTARLab: サッカーにおける時空間エージェントデータ分析のためのオープンアプローチ
- Authors: Calvin Yeung, Kenjiro Ide, Taiga Someya, Keisuke Fujii,
- Abstract要約: スポーツアナリティクスは、より専門的で洗練されたものになり、詳細なパフォーマンスデータが利用できるようになった。
サッカーでは、イベントと追跡データの効果的な利用は、ゲームのダイナミクスを捕捉し分析するための基本となる。
本稿では,スポーツにおける時間的エージェントデータ分析の民主化を目的としたオープンソースフレームワークであるOpenSTARLabを提案する。
- 参考スコア(独自算出の注目度): 0.9207076627649226
- License:
- Abstract: Sports analytics has become both more professional and sophisticated, driven by the growing availability of detailed performance data. This progress enables applications such as match outcome prediction, player scouting, and tactical analysis. In soccer, the effective utilization of event and tracking data is fundamental for capturing and analyzing the dynamics of the game. However, there are two primary challenges: the limited availability of event data, primarily restricted to top-tier teams and leagues, and the scarcity and high cost of tracking data, which complicates its integration with event data for comprehensive analysis. Here we propose OpenSTARLab, an open-source framework designed to democratize spatio-temporal agent data analysis in sports by addressing these key challenges. OpenSTARLab includes the Pre-processing Package that standardizes event and tracking data through Unified and Integrated Event Data and State-Action-Reward formats, the Event Modeling Package that implements deep learning-based event prediction, alongside the RLearn Package for reinforcement learning tasks. These technical components facilitate the handling of diverse data sources and support advanced analytical tasks, thereby enhancing the overall functionality and usability of the framework. To assess OpenSTARLab's effectiveness, we conducted several experimental evaluations. These demonstrate the superior performance of the specific event prediction model in terms of action and time prediction accuracies and maintained its robust event simulation performance. Furthermore, reinforcement learning experiments reveal a trade-off between action accuracy and temporal difference loss and show comprehensive visualization. Overall, OpenSTARLab serves as a robust platform for researchers and practitioners, enhancing innovation and collaboration in the field of soccer data analytics.
- Abstract(参考訳): スポーツアナリティクスは、より専門的で洗練されたものになり、詳細なパフォーマンスデータが利用可能になった。
この進歩により、マッチング結果予測、プレイヤースカウト、戦術解析などの応用が可能になる。
サッカーでは、イベントと追跡データの効果的な利用は、ゲームのダイナミクスを捕捉し分析するための基本となる。
しかし、主な課題は2つある: 主に上位のチームやリーグに限られるイベントデータの可用性の制限と、データ追跡の不足と高コストであり、包括的な分析のためにイベントデータとの統合が複雑である。
本稿では,スポーツにおける時空間データ分析の民主化を目的としたオープンソースのフレームワークであるOpenSTARLabを提案する。
OpenSTARLabには、イベントの標準化と、統合されたイベントデータとState-Action-Rewardフォーマットによるデータの追跡を行う事前処理パッケージ、ディープラーニングベースのイベント予測を実装するEvent Modeling Package、強化学習タスク用のRLearn Packageが含まれている。
これらの技術コンポーネントは多様なデータソースの処理を促進し、高度な分析タスクをサポートし、フレームワークの全体的な機能とユーザビリティを向上させる。
OpenSTARLabの有効性を評価するために,実験を行った。
これらの結果は,行動予測と時間予測の精度で特定の事象予測モデルの優れた性能を示し,その堅牢な事象シミュレーション性能を維持した。
さらに、強化学習実験は、動作精度と時間差損失とのトレードオフを明らかにし、包括的な可視化を示す。
全体として、OpenSTARLabは、研究者や実践者の堅牢なプラットフォームとして機能し、サッカーデータ分析の分野でのイノベーションとコラボレーションを強化する。
関連論文リスト
- WearableMil: An End-to-End Framework for Military Activity Recognition and Performance Monitoring [7.130450173185638]
本稿では、軍事訓練におけるウェアラブルデータからの活動の事前処理、分析、認識のためのエンドツーエンドフレームワークを提案する。
textitGarmin-55スマートウォッチを6ヶ月以上、1500万分以上使用した兵士135人のデータを使っています。
我々のフレームワークは、生理学的にインフォームドされた方法で欠落したデータに対処し、未知の睡眠状態を40.38%から3.66%に減らした。
論文 参考訳(メタデータ) (2024-10-07T19:35:15Z) - OSL-ActionSpotting: A Unified Library for Action Spotting in Sports Videos [56.393522913188704]
我々は,スポーツビデオ分析における研究と応用の合理化のために,さまざまなアクションスポッティングアルゴリズムを統合するPythonライブラリであるOSL-ActionSpottingを紹介する。
我々はOSL-ActionSpottingに3つの基本アクションスポッティング手法を統合することに成功した。
論文 参考訳(メタデータ) (2024-07-01T13:17:37Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Inter-case Predictive Process Monitoring: A candidate for Quantum
Machine Learning? [0.0]
この研究は、最近のケース間予測プロセスモニタリングの進歩に基づいている。
予測精度に対するケース間機能の影響を総合的にベンチマークする。
量子機械学習モデルが含まれており、古典的なモデルに勝るものと期待されている。
BPIチャレンジによる実世界のトレーニングデータの評価は、ケース間の特徴が精度の4%以上向上していることを示している。
論文 参考訳(メタデータ) (2023-06-30T18:33:45Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Optical tracking in team sports [0.0]
入力データを作成する過程について、定量的データアナリストに基本的な理解を提供する。
本稿では,トラッキングの事前処理手順,この領域における最も一般的な課題,およびスポーツチームへのデータ追跡の適用について論じる。
論文 参考訳(メタデータ) (2022-04-08T15:51:35Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
本研究では,不完全な実世界のファサー計測単位(PMU)データを用いて,ロバストな事象分類について検討する。
我々は、堅牢なイベント分類器を訓練するための新しい機械学習フレームワークを開発する。
論文 参考訳(メタデータ) (2021-10-19T17:41:43Z) - EventPoint: Self-Supervised Local Descriptor Learning for Event Cameras [2.3300629798610446]
本研究では,イベントポイントと呼ばれるフレームベースのイベントデータに基づいて,自己教師付き学習手法を用いて,イントレストポイントとディスクリプタを抽出する手法を提案する。
提案した自己教師型学習手法を用いて、実際のイベント形式の駆動データセットに基づいてモデルをトレーニングし、イベントデータの特徴を十分に考慮する。
論文 参考訳(メタデータ) (2021-09-01T06:58:14Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Human in Events: A Large-Scale Benchmark for Human-centric Video
Analysis in Complex Events [106.19047816743988]
我々は、Human-in-Events(Human-in-Events)またはHiEve(HiEve)という、包括的なアノテーションを備えた新しい大規模データセットを提案する。
これには、複雑なイベントにおけるアクションインスタンスの最大数(>56k)と、長時間続くトラジェクトリの最大数(>1M)が含まれている。
多様なアノテーションに基づいて、アクション認識とポーズ推定のための2つのシンプルなベースラインを提示する。
論文 参考訳(メタデータ) (2020-05-09T18:24:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。