SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models
- URL: http://arxiv.org/abs/2502.02787v1
- Date: Wed, 05 Feb 2025 00:21:01 GMT
- Title: SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models
- Authors: Amirhossein Dabiriaghdam, Lele Wang,
- Abstract summary: SimMark is a posthoc watermarking algorithm that makes large language models' outputs traceable without requiring access to the model's internal logits.
Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content.
- Score: 1.7188280334580197
- License:
- Abstract: The rapid proliferation of large language models (LLMs) has created an urgent need for reliable methods to detect whether a text is generated by such models. In this paper, we propose SimMark, a posthoc watermarking algorithm that makes LLMs' outputs traceable without requiring access to the model's internal logits, enabling compatibility with a wide range of LLMs, including API-only models. By leveraging the similarity of semantic sentence embeddings and rejection sampling to impose detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while preserving the text quality.
Related papers
- Improved Unbiased Watermark for Large Language Models [59.00698153097887]
We introduce MCmark, a family of unbiased, Multi-Channel-based watermarks.
MCmark preserves the original distribution of the language model.
It offers significant improvements in detectability and robustness over existing unbiased watermarks.
arXiv Detail & Related papers (2025-02-16T21:02:36Z) - GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMark is a simple, efficient, and relatively robust scheme for watermarking large language models.
We show that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations.
arXiv Detail & Related papers (2025-01-17T22:30:08Z) - FreqMark: Frequency-Based Watermark for Sentence-Level Detection of LLM-Generated Text [31.600659350609476]
FreqMark embeds frequency-based watermarks in Large Language Models (LLMs) generated text during token sampling process.
Method leverages periodic signals to guide token selection, creating a watermark that can be detected with Short-Time Fourier Transform (STFT) analysis.
Experiments demonstrate robustness and precision of FreqMark, showing strong detection capabilities against various attack scenarios.
arXiv Detail & Related papers (2024-10-09T05:01:48Z) - Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLM is an open-source toolkit for implementing LLM watermarking algorithms.
For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines.
arXiv Detail & Related papers (2024-05-16T12:40:01Z) - Topic-Based Watermarks for Large Language Models [46.71493672772134]
We propose a lightweight, topic-guided watermarking scheme for Large Language Model (LLM) output.
Our method achieves comparable perplexity to industry-leading systems, including Google's SynthID-Text.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
arXiv Detail & Related papers (2024-02-28T05:43:22Z) - A Robust Semantics-based Watermark for Large Language Model against Paraphrasing [50.84892876636013]
Large language models (LLMs) have show great ability in various natural language tasks.
There are concerns that LLMs are possible to be used improperly or even illegally.
We propose a semantics-based watermark framework SemaMark.
arXiv Detail & Related papers (2023-11-15T06:19:02Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.