Mol-LLM: Generalist Molecular LLM with Improved Graph Utilization
- URL: http://arxiv.org/abs/2502.02810v1
- Date: Wed, 05 Feb 2025 01:14:12 GMT
- Title: Mol-LLM: Generalist Molecular LLM with Improved Graph Utilization
- Authors: Chanhui Lee, Yuheon Song, YongJun Jeong, Hanbum Ko, Rodrigo Hormazabal, Sehui Han, Kyunghoon Bae, Sungbin Lim, Sungwoong Kim,
- Abstract summary: Large Language Models (LLMs) have motivated the development of general LLMs for molecular tasks.
LLMs trained with naive next-token prediction training assign similar likelihood scores to both original and corrupted molecules.
We introduce a novel multi-modal training method based on a thorough multi-modal instruction tuning and a molecular structure preference optimization.
- Score: 8.846705148987652
- License:
- Abstract: Recent advances in Large Language Models (LLMs) have motivated the development of general LLMs for molecular tasks. While several studies have demonstrated that fine-tuned LLMs can achieve impressive benchmark performances, they are far from genuine generalist molecular LLMs due to a lack of fundamental understanding of molecular structure. Specifically, when given molecular task instructions, LLMs trained with naive next-token prediction training assign similar likelihood scores to both original and negatively corrupted molecules, revealing their lack of molecular structure understanding that is crucial for reliable and general molecular LLMs. To overcome this limitation and obtain a true generalist molecular LLM, we introduce a novel multi-modal training method based on a thorough multi-modal instruction tuning as well as a molecular structure preference optimization between chosen and rejected graphs. On various molecular benchmarks, the proposed generalist molecular LLM, called Mol-LLM, achieves state-of-the-art performances among generalist LLMs on most tasks, at the same time, surpassing or comparable to state-of-the-art specialist LLMs. Moreover, Mol-LLM also shows superior generalization performances in reaction prediction tasks, demonstrating the effect of the molecular structure understanding for generalization perspective.
Related papers
- Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMA is a large molecular language model that grasps the general knowledge centered on molecules via multi-modal instruction tuning.
To improve understanding of molecular features, we introduce a module that integrates complementary information from different molecular encoders.
arXiv Detail & Related papers (2025-02-19T05:49:10Z) - MolCap-Arena: A Comprehensive Captioning Benchmark on Language-Enhanced Molecular Property Prediction [44.27112553103388]
We present Molecule Caption Arena: the first comprehensive benchmark of large language models (LLMs)augmented molecular property prediction.
We evaluate over twenty LLMs, including both general-purpose and domain-specific molecule captioners, across diverse prediction tasks.
Our findings confirm the ability of LLM-extracted knowledge to enhance state-of-the-art molecular representations.
arXiv Detail & Related papers (2024-11-01T17:03:16Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - MolX: Enhancing Large Language Models for Molecular Learning with A Multi-Modal Extension [34.586861881519134]
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields.
This study seeks to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, namely MolX.
In particular, instead of directly using a SMILES string to represent a molecule, we utilize specific encoders to extract fine-grained features from both SMILES string and 2D molecular graph representations.
arXiv Detail & Related papers (2024-06-10T20:25:18Z) - Can Large Language Models Understand Molecules? [0.0699049312989311]
We investigate the performance of GPT and LLaMA compared to pre-trained models on SMILES in embedding SMILES strings on downstream tasks.
We find that SMILES embeddings generated using LLaMA outperform those from GPT in both molecular property and DDI prediction tasks.
arXiv Detail & Related papers (2024-01-05T18:31:34Z) - Can Large Language Models Empower Molecular Property Prediction? [16.5246941211725]
Molecular property prediction has gained significant attention due to its transformative potential in scientific disciplines.
Recently, the rapid development of Large Language Models (LLMs) has revolutionized the field of NLP.
In this work, we advance towards this objective through two perspectives: zero/few-shot molecular classification, and using the new explanations generated by LLMs as representations of molecules.
arXiv Detail & Related papers (2023-07-14T16:06:42Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.