論文の概要: A Decade of Action Quality Assessment: Largest Systematic Survey of Trends, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2502.02817v1
- Date: Wed, 05 Feb 2025 01:33:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:39.302081
- Title: A Decade of Action Quality Assessment: Largest Systematic Survey of Trends, Challenges, and Future Directions
- Title(参考訳): 行動品質評価の10年 - 最新の動向, 課題, 今後の方向性の大規模体系的調査-
- Authors: Hao Yin, Paritosh Parmar, Daoliang Xu, Yang Zhang, Tianyou Zheng, Weiwei Fu,
- Abstract要約: アクション・クオリティ・アセスメント(AQA)は、低コストな生理療法、スポーツトレーニング、労働力開発などの分野において、大きな意味を持つ。
我々は,システムレビュー・メタアナリシス(PRISMA)フレームワークに推奨される報告項目を用いて,200以上の研究論文を体系的にレビューする。
この調査は、調査トレンド、パフォーマンス比較、課題、今後の方向性に関する詳細な分析を提供する。
- 参考スコア(独自算出の注目度): 8.27542607031299
- License:
- Abstract: Action Quality Assessment (AQA) -- the ability to quantify the quality of human motion, actions, or skill levels and provide feedback -- has far-reaching implications in areas such as low-cost physiotherapy, sports training, and workforce development. As such, it has become a critical field in computer vision & video understanding over the past decade. Significant progress has been made in AQA methodologies, datasets, & applications, yet a pressing need remains for a comprehensive synthesis of this rapidly evolving field. In this paper, we present a thorough survey of the AQA landscape, systematically reviewing over 200 research papers using the preferred reporting items for systematic reviews & meta-analyses (PRISMA) framework. We begin by covering foundational concepts & definitions, then move to general frameworks & performance metrics, & finally discuss the latest advances in methodologies & datasets. This survey provides a detailed analysis of research trends, performance comparisons, challenges, & future directions. Through this work, we aim to offer a valuable resource for both newcomers & experienced researchers, promoting further exploration & progress in AQA. Data are available at https://haoyin116.github.io/Survey_of_AQA/
- Abstract(参考訳): 行動品質評価(AQA) - 人間の動作、行動、スキルレベルを定量化し、フィードバックを提供する能力。
そのため、過去10年間でコンピュータビジョンとビデオ理解において重要な分野となっている。
AQAの方法論、データセット、アプリケーションにおいて重要な進歩があったが、この急速に進化する分野を包括的に合成する必要性が高まっている。
本稿では,AQAのランドスケープを網羅的に調査し,200以上の研究論文を体系的レビュー・メタ分析(PRISMA)フレームワークに好適な報告項目を用いて体系的にレビューする。
まず基本的な概念と定義を取り上げ、次に一般的なフレームワークとパフォーマンスメトリクスに移行し、最後に方法論とデータセットの最新の進歩について議論します。
この調査は、調査トレンド、パフォーマンス比較、課題、今後の方向性に関する詳細な分析を提供する。
本研究は,AQAのさらなる探究と進展を促進するために,新参者,経験者双方に貴重な資源を提供することを目的としている。
データはhttps://haoyin116.github.io/Survey_of_AQA/で公開されている。
関連論文リスト
- Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models [0.0]
自然言語処理におけるオープンドメイン質問回答(ODQA)は,大規模知識コーパスを用いて,事実質問に回答するシステムを構築する。
高品質なデータセットは、現実的なシナリオでモデルをトレーニングするために使用されます。
標準化されたメトリクスは、異なるODQAシステム間の比較を容易にする。
論文 参考訳(メタデータ) (2024-06-19T05:43:02Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Robust Visual Question Answering: Datasets, Methods, and Future
Challenges [23.59923999144776]
視覚的な質問応答には、画像と自然言語の質問に与えられた正確な自然言語の回答を提供するシステムが必要である。
従来の一般的なVQA手法は、答えを予測する前に画像のグラウンド化など適切な振る舞いを学ぶのではなく、トレーニングデータに存在するバイアスを記憶する傾向がある。
VQAのロバスト性を評価するために,様々なデータセットとデバイアス法が提案されている。
論文 参考訳(メタデータ) (2023-07-21T10:12:09Z) - QontSum: On Contrasting Salient Content for Query-focused Summarization [22.738731393540633]
クエリ中心の要約(QFS)は、特定のクエリに対処する要約を生成する自然言語処理において難しいタスクである。
本稿では,GARにおけるQFSの役割について述べる。
コントラスト学習を利用したQFSの新しい手法であるQontSumを提案する。
論文 参考訳(メタデータ) (2023-07-14T19:25:35Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD)は、人間の学習能力を模倣する。
FSODは、学習した汎用オブジェクトの知識を共通のヘビーテールから新しいロングテールオブジェクトクラスにインテリジェントに転送する。
本稿では,問題定義,共通データセット,評価プロトコルなどを含むFSODの概要を紹介する。
論文 参考訳(メタデータ) (2022-03-27T04:11:28Z) - Conversational Question Answering: A Survey [18.447856993867788]
本調査は,会話質問回答(CQA)の最先端研究動向を包括的に概観する試みである。
この結果から,会話型AIの分野をさまざまな観点から活性化する一ターンから多ターンQAへの傾向が示唆された。
論文 参考訳(メタデータ) (2021-06-02T01:06:34Z) - Retrieving and Reading: A Comprehensive Survey on Open-domain Question
Answering [62.88322725956294]
OpenQAの最近の研究動向を概観し、特にニューラルMSC技術を導入したシステムに注目した。
Retriever-Reader' と呼ばれる最新の OpenQA アーキテクチャを導入し、このアーキテクチャに従うさまざまなシステムを分析します。
次に、OpenQAシステムの開発における主要な課題について議論し、一般的に使用されるベンチマークの分析を提供する。
論文 参考訳(メタデータ) (2021-01-04T04:47:46Z) - Survey on the Analysis and Modeling of Visual Kinship: A Decade in the
Making [66.72253432908693]
親和性認識は多くの実践的応用において難しい問題である。
我々は、多くの人にその見解を刺激した公開リソースとデータ課題についてレビューする。
10周年記念には、さまざまなkinベースのタスクのためのデモコードが用意されている。
論文 参考訳(メタデータ) (2020-06-29T13:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。