論文の概要: Task-Aware Virtual Training: Enhancing Generalization in Meta-Reinforcement Learning for Out-of-Distribution Tasks
- arxiv url: http://arxiv.org/abs/2502.02834v1
- Date: Wed, 05 Feb 2025 02:31:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:34.911381
- Title: Task-Aware Virtual Training: Enhancing Generalization in Meta-Reinforcement Learning for Out-of-Distribution Tasks
- Title(参考訳): タスク・アウェア・バーチャル・トレーニング:アウト・オブ・ディストリビューション・タスクのためのメタ強化学習における一般化の促進
- Authors: Jeongmo Kim, Yisak Park, Minung Kim, Seungyul Han,
- Abstract要約: Task-Aware Virtual Training (TAVT)は、トレーニングとアウト・オブ・ディストリビューション(OOD)シナリオの両方のタスク特性をキャプチャする新しいアルゴリズムである。
数値計算の結果,TAVT は様々な MuJoCo および MetaWorld 環境における OOD タスクの一般化を著しく促進することが示された。
- 参考スコア(独自算出の注目度): 4.374837991804085
- License:
- Abstract: Meta reinforcement learning aims to develop policies that generalize to unseen tasks sampled from a task distribution. While context-based meta-RL methods improve task representation using task latents, they often struggle with out-of-distribution (OOD) tasks. To address this, we propose Task-Aware Virtual Training (TAVT), a novel algorithm that accurately captures task characteristics for both training and OOD scenarios using metric-based representation learning. Our method successfully preserves task characteristics in virtual tasks and employs a state regularization technique to mitigate overestimation errors in state-varying environments. Numerical results demonstrate that TAVT significantly enhances generalization to OOD tasks across various MuJoCo and MetaWorld environments.
- Abstract(参考訳): メタ強化学習は、タスク分布からサンプリングされた未確認タスクに一般化するポリシーを開発することを目的としている。
コンテキストベースのメタRLメソッドはタスクラテントを用いたタスク表現を改善するが、しばしばアウト・オブ・ディストリビューション(OOD)タスクに苦労する。
そこで本研究では,パラメータベース表現学習を用いて,トレーニングとOODシナリオの両方のタスク特性を正確にキャプチャする,タスク認識バーチャルトレーニング(TAVT)を提案する。
本手法は,仮想タスクにおけるタスク特性の保存に成功し,状態変化環境における過大評価誤差を軽減するために,状態正規化手法を用いる。
数値計算の結果,TAVT は様々な MuJoCo および MetaWorld 環境における OOD タスクの一般化を著しく促進することが示された。
関連論文リスト
- Decoupling Meta-Reinforcement Learning with Gaussian Task Contexts and
Skills [17.666749042008178]
本稿では,DCMRL(Decoupled Meta-Reinforcement Learning)というフレームワークを提案する。
DCMRLは、同じタスク内で同様のタスクコンテキストを取り出し、異なるタスクの異なるタスクコンテキストをプッシュします。
実験により、DCMRLは従来のメタRL法よりも有効であり、より一般化可能な事前経験を持つことが示された。
論文 参考訳(メタデータ) (2023-12-11T16:50:14Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
インストラクションチューニング(IT)は,大規模言語モデル(LLM)を命令付き多種多様なタスクで訓練することにより,印象的なゼロショット一般化を実現する。
ITモデルの性能と一般化性を改善するために、新しいタスクをどのように選択するかは、未解決の問題である。
本稿では,情報的タスクを識別する新しいフレームワークである即時不確実性に基づくアクティブな指導チューニングを提案し,選択したタスク上でモデルをアクティブにチューニングする。
論文 参考訳(メタデータ) (2023-11-01T04:40:05Z) - Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
メタラーニングは、限られたデータから行われる多様なトレーニングタスクで一般的な知識を学び、それを新しいタスクに転送することを目的としている。
タスク多様性の増大はメタラーニングモデルの一般化能力を高めると一般的に信じられている。
本稿では、経験的および理論的分析を通して、この見解に挑戦する。
論文 参考訳(メタデータ) (2023-07-18T01:53:18Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSSは、自己監督型タスク表現学習に基づくコンテキストベースメタ強化学習アルゴリズムである。
MuJoCoとMeta-Worldのベンチマークでは、MoSSはパフォーマンス、サンプル効率(3-50倍高速)、適応効率、一般化の点で先行して性能が向上している。
論文 参考訳(メタデータ) (2023-04-29T15:46:19Z) - Task Aware Dreamer for Task Generalization in Reinforcement Learning [32.93706056123124]
一般的な世界モデルのトレーニングは、タスクにおいて同様の構造を活用でき、より一般化可能なエージェントのトレーニングに役立つことを示す。
本稿では,タスク間の遅延特性を識別するために,報酬インフォームド機能を統合するタスク・アウェア・ドリーマー (TAD) という新しい手法を提案する。
画像ベースのタスクと状態ベースのタスクの両方の実験は、TADが異なるタスクを同時に処理するパフォーマンスを大幅に改善できることを示している。
論文 参考訳(メタデータ) (2023-03-09T08:04:16Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
本研究は,訓練作業中の行動伝達子を学習するための,新たな客観的機能を導入する。
理論的には、転送されたポリシーとアクショントランスレータの値が、ソースポリシーの値に近似可能であることを検証する。
本稿では,アクショントランスレータとコンテキストベースメタRLアルゴリズムを組み合わせることで,データ収集の効率化と,メタトレーニング時の効率的な探索を提案する。
論文 参考訳(メタデータ) (2022-07-19T04:58:06Z) - Learning to generate imaginary tasks for improving generalization in
meta-learning [12.635773307074022]
既存のベンチマークにおけるメタ学習の成功は、メタトレーニングタスクの分布がメタテストタスクをカバーするという仮定に基づいて予測される。
最近のソリューションではメタトレーニングタスクの強化が追求されているが、正確なタスクと十分な想像上のタスクの両方を生成することは、まだ未解決の問題である。
本稿では,タスクアップサンプリングネットワークを通じてタスク表現からメタ学習タスクをアップサンプリングする手法を提案する。さらに,タスクアップサンプリング(ATU)と呼ばれるアプローチにより,タスクを最大化することで,最新のメタラーナーに最大限貢献できるタスクを生成する。
論文 参考訳(メタデータ) (2022-06-09T08:21:05Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
本稿では,タスクがサブタスクグラフによって特徴づけられるような,新しい数発のRL問題を提案し,対処する。
メタ政治を直接学習する代わりに、Subtask Graph Inferenceを使ったメタラーナーを開発した。
実験の結果,2つのグリッドワールド領域とStarCraft II環境において,提案手法が潜在タスクパラメータを正確に推定できることが確認された。
論文 参考訳(メタデータ) (2020-01-01T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。