Algorithms with Calibrated Machine Learning Predictions
- URL: http://arxiv.org/abs/2502.02861v2
- Date: Thu, 06 Feb 2025 22:00:42 GMT
- Title: Algorithms with Calibrated Machine Learning Predictions
- Authors: Judy Hanwen Shen, Ellen Vitercik, Anders Wikum,
- Abstract summary: The field of algorithms with predictions incorporates machine learning advice in the design of online algorithms to improve real-world performance.<n>We propose calibration as a principled and practical tool to bridge this gap, demonstrating the benefits of calibrated advice through two case studies.<n>For ski rental, we design an algorithm that achieves optimal prediction-dependent performance and prove that, in high-variance settings, calibrated advice offers more effective guidance than alternative methods for uncertainty.<n>For job scheduling, we demonstrate that using a predictor leads to significant performance improvements over existing methods.
- Score: 9.18151868060576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of algorithms with predictions incorporates machine learning advice in the design of online algorithms to improve real-world performance. While this theoretical framework often assumes uniform reliability across all predictions, modern machine learning models can now provide instance-level uncertainty estimates. In this paper, we propose calibration as a principled and practical tool to bridge this gap, demonstrating the benefits of calibrated advice through two case studies: the ski rental and online job scheduling problems. For ski rental, we design an algorithm that achieves optimal prediction-dependent performance and prove that, in high-variance settings, calibrated advice offers more effective guidance than alternative methods for uncertainty quantification. For job scheduling, we demonstrate that using a calibrated predictor leads to significant performance improvements over existing methods. Evaluations on real-world data validate our theoretical findings, highlighting the practical impact of calibration for algorithms with predictions.
Related papers
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data.
Prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box.
In this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge.
arXiv Detail & Related papers (2024-03-12T08:40:21Z) - Mechanic: A Learning Rate Tuner [52.4242550204696]
We introduce a technique for tuning the learning rate scale factor of any base optimization algorithm and schedule automatically, which we call textscmechanic.
We rigorously evaluate textscmechanic on a range of large scale deep learning tasks with varying batch sizes, schedules, and base optimization algorithms.
arXiv Detail & Related papers (2023-05-31T19:32:43Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
We introduce a general design approach for algorithms that learn predictors.
We apply techniques from online learning to learn against adversarial instances, tune robustness-consistency trade-offs, and obtain new statistical guarantees.
We demonstrate the effectiveness of our approach at deriving learning algorithms by analyzing methods for bipartite matching, page migration, ski-rental, and job scheduling.
arXiv Detail & Related papers (2022-02-18T17:25:43Z) - Parsimonious Learning-Augmented Caching [29.975391787684966]
We introduce and study the setting in which the learning-augmented algorithm can utilize the predictions parsimoniously.
We show that one can achieve quantitatively similar results but only using a sublinear number of predictions.
arXiv Detail & Related papers (2022-02-09T03:40:11Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
We study the generation of prediction intervals in regression for uncertainty quantification.
We use a general learning theory to characterize the optimality-feasibility tradeoff that encompasses Lipschitz continuity and VC-subgraph classes.
We empirically demonstrate the strengths of our interval generation and calibration algorithms in terms of testing performances compared to existing benchmarks.
arXiv Detail & Related papers (2021-02-26T17:55:30Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.