Mechanic: A Learning Rate Tuner
- URL: http://arxiv.org/abs/2306.00144v2
- Date: Fri, 2 Jun 2023 01:09:47 GMT
- Title: Mechanic: A Learning Rate Tuner
- Authors: Ashok Cutkosky, Aaron Defazio, Harsh Mehta
- Abstract summary: We introduce a technique for tuning the learning rate scale factor of any base optimization algorithm and schedule automatically, which we call textscmechanic.
We rigorously evaluate textscmechanic on a range of large scale deep learning tasks with varying batch sizes, schedules, and base optimization algorithms.
- Score: 52.4242550204696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a technique for tuning the learning rate scale factor of any
base optimization algorithm and schedule automatically, which we call
\textsc{mechanic}. Our method provides a practical realization of recent
theoretical reductions for accomplishing a similar goal in online convex
optimization. We rigorously evaluate \textsc{mechanic} on a range of large
scale deep learning tasks with varying batch sizes, schedules, and base
optimization algorithms. These experiments demonstrate that depending on the
problem, \textsc{mechanic} either comes very close to, matches or even improves
upon manual tuning of learning rates.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Improving Gradient Methods via Coordinate Transformations: Applications to Quantum Machine Learning [0.0]
Machine learning algorithms heavily rely on optimization algorithms based on gradients, such as gradient descent and alike.
The overall performance is dependent on the appearance of local minima and barren plateaus, which slow-down calculations and lead to non-optimal solutions.
In this paper we introduce a generic strategy to accelerate and improve the overall performance of such methods, allowing to alleviate the effect of barren plateaus and local minima.
arXiv Detail & Related papers (2023-04-13T18:26:05Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
Information [37.70729542263343]
We present a novel adaptive optimization algorithm for large-scale machine learning problems.
Our method dynamically adapts the direction and step-size.
Our methodology does not require a tedious tuning rate tuning.
arXiv Detail & Related papers (2021-09-11T06:39:50Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Reverse engineering learned optimizers reveals known and novel
mechanisms [50.50540910474342]
Learneds are algorithms that can themselves be trained to solve optimization problems.
Our results help elucidate the previously murky understanding of how learneds work, and establish tools for interpreting future learneds.
arXiv Detail & Related papers (2020-11-04T07:12:43Z) - Automatic Tuning of Stochastic Gradient Descent with Bayesian
Optimisation [8.340191147575307]
We introduce an original probabilistic model for traces of optimisers, based on latent Gaussian processes and an auto-/regressive formulation.
It flexibly adjusts to abrupt changes of behaviours induced by new learning rate values.
It is well-suited to tackle a set of problems: first, for the on-line adaptation of the learning rate for a cold-started run; then, for tuning the schedule for a set of similar tasks, as well as warm-starting it for a new task.
arXiv Detail & Related papers (2020-06-25T13:18:18Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.