Learning Generalizable Features for Tibial Plateau Fracture Segmentation Using Masked Autoencoder and Limited Annotations
- URL: http://arxiv.org/abs/2502.02862v1
- Date: Wed, 05 Feb 2025 03:44:52 GMT
- Title: Learning Generalizable Features for Tibial Plateau Fracture Segmentation Using Masked Autoencoder and Limited Annotations
- Authors: Peiyan Yue, Die Cai, Chu Guo, Mengxing Liu, Jun Xia, Yi Wang,
- Abstract summary: We propose an effective training strategy based on masked autoencoder (MAE) for the accurate TPF segmentation in CT.
Our method leverages MAE pretraining to capture global skeletal structures and fine-grained fracture details from unlabeled data, followed by fine-tuning with a small set of labeled data.
Experimental results demonstrate that our method consistently outperforms semi-supervised methods.
- Score: 9.62712439690871
- License:
- Abstract: Accurate automated segmentation of tibial plateau fractures (TPF) from computed tomography (CT) requires large amounts of annotated data to train deep learning models, but obtaining such annotations presents unique challenges. The process demands expert knowledge to identify diverse fracture patterns, assess severity, and account for individual anatomical variations, making the annotation process highly time-consuming and expensive. Although semi-supervised learning methods can utilize unlabeled data, existing approaches often struggle with the complexity and variability of fracture morphologies, as well as limited generalizability across datasets. To tackle these issues, we propose an effective training strategy based on masked autoencoder (MAE) for the accurate TPF segmentation in CT. Our method leverages MAE pretraining to capture global skeletal structures and fine-grained fracture details from unlabeled data, followed by fine-tuning with a small set of labeled data. This strategy reduces the dependence on extensive annotations while enhancing the model's ability to learn generalizable and transferable features. The proposed method is evaluated on an in-house dataset containing 180 CT scans with TPF. Experimental results demonstrate that our method consistently outperforms semi-supervised methods, achieving an average Dice similarity coefficient (DSC) of 95.81%, average symmetric surface distance (ASSD) of 1.91mm, and Hausdorff distance (95HD) of 9.42mm with only 20 annotated cases. Moreover, our method exhibits strong transferability when applying to another public pelvic CT dataset with hip fractures, highlighting its potential for broader applications in fracture segmentation tasks.
Related papers
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - DALSA: Domain Adaptation for Supervised Learning From Sparsely Annotated
MR Images [2.352695945685781]
We propose a new method that employs transfer learning techniques to correct sampling selection errors introduced by sparse annotations during supervised learning for automated tumor segmentation.
The proposed method derives high-quality classifiers for the different tissue classes from sparse and unambiguous annotations.
Compared to training on fully labeled data, we reduced the time for labeling and training by a factor greater than 70 and 180 respectively without sacrificing accuracy.
arXiv Detail & Related papers (2024-03-12T09:17:21Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Constrained self-supervised method with temporal ensembling for fiber
bundle detection on anatomic tracing data [0.08329098197319453]
In this work, we propose a deep learning method with a self-supervised loss function for accurate segmentation of fiber bundles on the tracer sections from macaque brains.
Evaluation of our method on unseen sections from a different macaque yields promising results with a true positive rate of 0.90.
arXiv Detail & Related papers (2022-08-06T19:17:02Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Automated femur segmentation from computed tomography images using a
deep neural network [0.0]
Osteoporosis is a common bone disease that occurs when the creation of new bone does not keep up with the loss of old bone, resulting in increased fracture risk.
We present a novel approach for segmenting the proximal femur that uses a deep convolutional neural network to produce accurate, automated, robust, and fast segmentations of the femur from CT scans.
arXiv Detail & Related papers (2021-01-27T23:37:56Z) - Deep Learning to Segment Pelvic Bones: Large-scale CT Datasets and
Baseline Models [20.061463073787234]
We aim to bridge the data gap by curating a large pelvic CT dataset pooled from multiple sources and different manufacturers.
We propose for the first time, to the best of our knowledge, to learn a deep multi-class network for segmenting lumbar spine, sacrum, left hip, and right hip.
Finally, we introduce a post-processing tool based on the signed distance function (SDF) to eliminate false predictions.
arXiv Detail & Related papers (2020-12-16T03:30:40Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.