COSMosFL: Ensemble of Small Language Models for Fault Localisation
- URL: http://arxiv.org/abs/2502.02908v1
- Date: Wed, 05 Feb 2025 06:09:26 GMT
- Title: COSMosFL: Ensemble of Small Language Models for Fault Localisation
- Authors: Hyunjoon Cho, Sungmin Kang, Gabin An, Shin Yoo,
- Abstract summary: We present COSMos, a task-level LLM ensemble technique that uses voting mechanism.
We report the cost-benefit trade-off between LLM accuracy and various costs such as energy consumption, inference time, and the number of tokens used.
- Score: 11.720815956899116
- License:
- Abstract: LLMs are rapidly being adopted to build powerful tools and agents for software engineering, but most of them rely heavily on extremely large closed-source models. This, in turn, can hinder wider adoption due to security issues as well as financial cost and environmental impact. Recently, a number of open source Small Language Models (SLMs) are being released and gaining traction. While SLMs are smaller, more energy-efficient, and therefore easier to locally deploy, they tend to show worse performance when compared to larger closed LLMs. We present COSMos, a task-level LLM ensemble technique that uses voting mechanism, to provide a broader range of choice between SLMs and LLMs. We instantiate COSMos with an LLM-based Fault Localisation technique, AutoFL, and report the cost-benefit trade-off between LLM accuracy and various costs such as energy consumption, inference time, and the number of tokens used. An empirical evaluation using Defects4J shows that COSMos can build effective ensembles that can achieve Pareto-optimality in terms of FL accuracy and inference cost, when compared to individual models.
Related papers
- Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
A primary challenge in large language model (LLM) development is their onerous pre-training cost.
This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by leveraging a small language model (SLM)
arXiv Detail & Related papers (2024-10-24T14:31:52Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning [36.37717583840935]
We propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs.
Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, and the cloud agent equipped with a larger LLM.
This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent.
arXiv Detail & Related papers (2024-10-17T03:07:37Z) - Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance [0.0]
Large language models (LLMs) are known for their exceptional performance across a range of natural language processing tasks.
Smaller language models (SLMs), which can be deployed on lower-cost edge devices, struggle to match the performance of their larger counterparts.
This paper presents a novel hybrid inference approach that leverages the strengths of both model types.
arXiv Detail & Related papers (2024-09-15T15:12:45Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
Large Language Models (LLMs) have significantly boosted performance in natural language processing (NLP) tasks.
The deployment of high-performance LLMs incurs substantial costs, primarily due to the increased number of parameters aimed at enhancing model performance.
We introduce SMART, a novel framework designed to minimize the inference costs of NLP tasks while ensuring sufficient result quality.
arXiv Detail & Related papers (2024-03-11T17:45:47Z) - Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs [3.450141240227484]
We propose a lightweight method for any-precision quantization of Large Language Models (LLMs)
Our solution significantly reduces the high costs of deploying multiple, different-sized LLMs.
All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput.
arXiv Detail & Related papers (2024-02-16T09:06:06Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Cache me if you Can: an Online Cost-aware Teacher-Student framework to
Reduce the Calls to Large Language Models [13.799197575126442]
Small and medium-sized enterprises (SMEs) cannot afford the cost of creating large task-specific training datasets.
Third-party services that allow them to prompt Large Language Models currently require a payment per call.
We propose a framework that allows reducing the calls to LLMs by caching previous responses and using them to train a local inexpensive model.
arXiv Detail & Related papers (2023-10-20T10:05:07Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.