Data denoising with self consistency, variance maximization, and the Kantorovich dominance
- URL: http://arxiv.org/abs/2502.02925v1
- Date: Wed, 05 Feb 2025 06:39:38 GMT
- Title: Data denoising with self consistency, variance maximization, and the Kantorovich dominance
- Authors: Joshua Zoen-Git Hiew, Tongseok Lim, Brendan Pass, Marcelo Cruz de Souza,
- Abstract summary: We introduce a new framework for data denoising inspired by martingale optimal transport.
We show that this amounts to maximizing the variance among measures in the domain which are dominated in convex order by the data.
We show that this revised problem shares some characteristics with the full convex order problem but offers enhanced stability, greater computational efficiency, and, in specific domains, more meaningful solutions.
- Score: 0.0
- License:
- Abstract: We introduce a new framework for data denoising, partially inspired by martingale optimal transport. For a given noisy distribution (the data), our approach involves finding the closest distribution to it among all distributions which 1) have a particular prescribed structure (expressed by requiring they lie in a particular domain), and 2) are self-consistent with the data. We show that this amounts to maximizing the variance among measures in the domain which are dominated in convex order by the data. For particular choices of the domain, this problem and a relaxed version of it, in which the self-consistency condition is removed, are intimately related to various classical approaches to denoising. We prove that our general problem has certain desirable features: solutions exist under mild assumptions, have certain robustness properties, and, for very simple domains, coincide with solutions to the relaxed problem. We also introduce a novel relationship between distributions, termed Kantorovich dominance, which retains certain aspects of the convex order while being a weaker, more robust, and easier-to-verify condition. Building on this, we propose and analyze a new denoising problem by substituting the convex order in the previously described framework with Kantorovich dominance. We demonstrate that this revised problem shares some characteristics with the full convex order problem but offers enhanced stability, greater computational efficiency, and, in specific domains, more meaningful solutions. Finally, we present simple numerical examples illustrating solutions for both the full convex order problem and the Kantorovich dominance problem.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Distributed Stochastic Optimization under a General Variance Condition [13.911633636387059]
Distributed optimization has drawn great attention recently due to its effectiveness in solving largescale machine learning problems.
We revisit the classical Federated Averaging (Avg) and establish the convergence results under only a mild variance for smooth non objective functions.
Almost a stationary convergence point is also established under the gradients condition.
arXiv Detail & Related papers (2023-01-30T05:48:09Z) - Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion
Problems [0.0]
A direct consequence of our result is that these solutions happen to be differentiable almost everywhere.
Our approach is fully compatible with automatic differentiation and comes with assumptions which are easy to check.
arXiv Detail & Related papers (2022-12-15T14:05:32Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
We prove the first high-probability results with logarithmic dependence on the confidence level for methods for solving monotone and structured non-monotone VIPs.
Our results match the best-known ones in the light-tails case and are novel for structured non-monotone problems.
In addition, we numerically validate that the gradient noise of many practical formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
arXiv Detail & Related papers (2022-06-02T15:21:55Z) - Minimax Optimization: The Case of Convex-Submodular [50.03984152441271]
Minimax problems extend beyond the continuous domain to mixed continuous-discrete domains or even fully discrete domains.
We introduce the class of convex-submodular minimax problems, where the objective is convex with respect to the continuous variable and submodular with respect to the discrete variable.
Our proposed algorithms are iterative and combine tools from both discrete and continuous optimization.
arXiv Detail & Related papers (2021-11-01T21:06:35Z) - On the Convexity of Discrete Time Covariance Steering in Stochastic
Linear Systems with Wasserstein Terminal Cost [1.1602089225841632]
We show that when the terminal state covariance is upper bounded, with respect to the L"owner partial order, our problem admits a unique global minimizing state feedback gain.
The results of this paper set the stage for the development of specialized control design tools.
arXiv Detail & Related papers (2021-03-25T03:24:52Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
Many machine learning applications involve learning representations that achieve two competing goals.
Minimax game-theoretic formulation represents a fundamental tradeoff between accuracy and invariance.
We provide an information-theoretic analysis of this general and important problem under both classification and regression settings.
arXiv Detail & Related papers (2020-12-19T15:24:04Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
arXiv Detail & Related papers (2020-02-20T17:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.