Lightweight Protocols for Distributed Private Quantile Estimation
- URL: http://arxiv.org/abs/2502.02990v1
- Date: Wed, 05 Feb 2025 08:39:02 GMT
- Title: Lightweight Protocols for Distributed Private Quantile Estimation
- Authors: Anders Aamand, Fabrizio Boninsegna, Abigail Gentle, Jacob Imola, Rasmus Pagh,
- Abstract summary: We consider two emphadaptive algorithms for estimating one quantile when each user holds a single data point lying in a domain $[B]$.
In the adaptive setting we present an $varepsilon$-LDP algorithm which can estimate any quantile within error $alpha$ only requiring $O(fraclog Bvarepsilon2alpha2)$ users.
- Score: 12.586899971090277
- License:
- Abstract: Distributed data analysis is a large and growing field driven by a massive proliferation of user devices, and by privacy concerns surrounding the centralised storage of data. We consider two \emph{adaptive} algorithms for estimating one quantile (e.g.~the median) when each user holds a single data point lying in a domain $[B]$ that can be queried once through a private mechanism; one under local differential privacy (LDP) and another for shuffle differential privacy (shuffle-DP). In the adaptive setting we present an $\varepsilon$-LDP algorithm which can estimate any quantile within error $\alpha$ only requiring $O(\frac{\log B}{\varepsilon^2\alpha^2})$ users, and an $(\varepsilon,\delta)$-shuffle DP algorithm requiring only $\widetilde{O}((\frac{1}{\varepsilon^2}+\frac{1}{\alpha^2})\log B)$ users. Prior (nonadaptive) algorithms require more users by several logarithmic factors in $B$. We further provide a matching lower bound for adaptive protocols, showing that our LDP algorithm is optimal in the low-$\varepsilon$ regime. Additionally, we establish lower bounds against non-adaptive protocols which paired with our understanding of the adaptive case, proves a fundamental separation between these models.
Related papers
- Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
We study person-level differentially private mean estimation in the case where each person holds multiple samples.
We give computationally efficient algorithms under approximate-DP and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP.
arXiv Detail & Related papers (2024-05-30T18:20:35Z) - Differentially Private Clustering in Data Streams [65.78882209673885]
We present a differentially private streaming clustering framework which only requires an offline DP coreset or clustering algorithm as a blackbox.
Our framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.
arXiv Detail & Related papers (2023-07-14T16:11:22Z) - Discrete Distribution Estimation under User-level Local Differential
Privacy [37.65849910114053]
We study discrete distribution estimation under user-level local differential privacy (LDP)
In user-level $varepsilon$-LDP, each user has $mge1$ samples and the privacy of all $m$ samples must be preserved simultaneously.
arXiv Detail & Related papers (2022-11-07T18:29:32Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - DP-PCA: Statistically Optimal and Differentially Private PCA [44.22319983246645]
DP-PCA is a single-pass algorithm that overcomes both limitations.
For sub-Gaussian data, we provide nearly optimal statistical error rates even for $n=tilde O(d)$.
arXiv Detail & Related papers (2022-05-27T02:02:17Z) - Frequency Estimation Under Multiparty Differential Privacy: One-shot and
Streaming [10.952006057356714]
We study the fundamental problem of frequency estimation under both privacy and communication constraints, where the data is distributed among $k$ parties.
We adopt the model of multiparty differential privacy (MDP), which is more general than local differential privacy (LDP) and (centralized) differential privacy.
Our protocols achieve optimality (up to logarithmic factors) permissible by the more stringent of the two constraints.
arXiv Detail & Related papers (2021-04-05T08:15:20Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.