論文の概要: Building Bridges between Regression, Clustering, and Classification
- arxiv url: http://arxiv.org/abs/2502.02996v1
- Date: Wed, 05 Feb 2025 08:45:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:28:50.906050
- Title: Building Bridges between Regression, Clustering, and Classification
- Title(参考訳): 回帰・クラスタリング・分類の橋梁
- Authors: Lawrence Stewart, Francis Bach, Quentin Berthet,
- Abstract要約: 本研究では,連続したスカラーターゲットを用いて回帰タスクにおけるモデルのトレーニングを改善する手法を提案する。
本手法は, ターゲットエンコーダと予測デコーダを用いて, 分類とクラスタリングのアプローチにインスパイアされた, 異なる方法でタスクをキャスティングすることに基づいている。
- 参考スコア(独自算出の注目度): 5.78009645672281
- License:
- Abstract: Regression, the task of predicting a continuous scalar target y based on some features x is one of the most fundamental tasks in machine learning and statistics. It has been observed and theoretically analyzed that the classical approach, meansquared error minimization, can lead to suboptimal results when training neural networks. In this work, we propose a new method to improve the training of these models on regression tasks, with continuous scalar targets. Our method is based on casting this task in a different fashion, using a target encoder, and a prediction decoder, inspired by approaches in classification and clustering. We showcase the performance of our method on a wide range of real-world datasets.
- Abstract(参考訳): 回帰(Regression)は、いくつかの機能 x に基づいて連続したスカラーターゲット y を予測するタスクであり、機械学習と統計学における最も基本的なタスクの1つである。
古典的アプローチである平均二乗誤差最小化は、ニューラルネットワークのトレーニングにおいて最適以下の結果をもたらすことが観察され、理論的に分析されている。
本研究では,これらのモデルの回帰タスクにおけるトレーニングを改善するための新しい手法を提案する。
本手法は, ターゲットエンコーダと予測デコーダを用いて, 分類とクラスタリングのアプローチにインスパイアされた, 異なる方法でタスクをキャスティングすることに基づいている。
提案手法の性能を実世界の幅広いデータセットで示す。
関連論文リスト
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - TIDo: Source-free Task Incremental Learning in Non-stationary
Environments [0.0]
モデルベースのエージェントを更新して新しいターゲットタスクを学習するには、過去のトレーニングデータを格納する必要があります。
ラベル付きターゲットデータセットの制限を克服するタスクインクリメンタル学習手法はほとんどない。
本研究では,非定常的および目標的タスクに適応可能なワンショットタスクインクリメンタル学習手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T02:19:45Z) - Deep Autoregressive Regression [5.257719744958367]
平均二乗誤差損失を用いた回帰の大幅な制限は、ターゲットの規模に対する感度であることを示す。
本稿では,実数値回帰目標,自己回帰回帰に基づく深層学習モデルの学習手法を提案する。
論文 参考訳(メタデータ) (2022-11-14T15:22:20Z) - Making Look-Ahead Active Learning Strategies Feasible with Neural
Tangent Kernels [6.372625755672473]
本稿では,仮説的ラベル付き候補データを用いた再学習に基づく,能動的学習獲得戦略の近似手法を提案する。
通常、これはディープ・ネットワークでは実現できないが、我々はニューラル・タンジェント・カーネルを用いて再トレーニングの結果を近似する。
論文 参考訳(メタデータ) (2022-06-25T06:13:27Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - Deep Ordinal Regression with Label Diversity [19.89482062012177]
本稿では,複数の離散データ表現を同時に使用することで,ニューラルネットワーク学習を改善することを提案する。
我々のアプローチはエンドツーエンドで微分可能であり、従来の学習方法への単純な拡張として追加することができる。
論文 参考訳(メタデータ) (2020-06-29T08:23:43Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。