RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts
- URL: http://arxiv.org/abs/2502.03044v1
- Date: Wed, 05 Feb 2025 10:03:09 GMT
- Title: RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts
- Authors: Tuan Truong, Chau Nguyen, Huy Nguyen, Minh Le, Trung Le, Nhat Ho,
- Abstract summary: Low-rank adaptation (LoRA) has emerged as a powerful method for fine-tuning large-scale foundation models.
This paper presents a theoretical analysis of LoRA by examining its connection to the Mixture of Experts models.
- Score: 37.43961020113692
- License:
- Abstract: Low-rank adaptation (LoRA) has emerged as a powerful method for fine-tuning large-scale foundation models. Despite its popularity, the theoretical understanding of LoRA has remained limited. This paper presents a theoretical analysis of LoRA by examining its connection to the Mixture of Experts models. Under this framework, we show that simple reparameterizations of the LoRA matrices can notably accelerate the low-rank matrix estimation process. In particular, we prove that reparameterization can reduce the data needed to achieve a desired estimation error from an exponential to a polynomial scale. Motivated by this insight, we propose Reparameterized Low-rank Adaptation (RepLoRA), which incorporates lightweight MLPs to reparameterize the LoRA matrices. Extensive experiments across multiple domains demonstrate that RepLoRA consistently outperforms vanilla LoRA. Notably, with limited data, RepLoRA surpasses LoRA by a margin of up to 40.0% and achieves LoRA's performance with only 30.0% of the training data, highlighting both the theoretical and empirical robustness of our PEFT method.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA [14.789886179102425]
BERT-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs.
We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters.
arXiv Detail & Related papers (2025-02-03T19:02:00Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods.
We propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant.
MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism.
arXiv Detail & Related papers (2024-10-23T17:04:40Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization [38.23587031169402]
We propose RoLoRA, the first LoRA-based scheme for effective weight-activation quantization.
We evaluate RoLoRA across LLaMA2-7B/13B, LLaMA3-8B models, achieving up to 29.5% absolute accuracy gain of 4-bit weight-activation quantized LLaMA2- 13B.
arXiv Detail & Related papers (2024-07-10T20:52:18Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
We propose a LoRA Dropout mechanism for the LoRA-based methods.
We show that appropriate sparsity would help tighten the gap between empirical and generalization risks.
arXiv Detail & Related papers (2024-04-15T09:32:12Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
Partially Rotation-enhanced Low-Rank Adaptation (PRoLoRA) is an intra-layer sharing mechanism.
PRoLoRA retains its advantages, and effectively circumvents the drawbacks of peer parameter-sharing methods.
Empirical experiments demonstrate the remarkably higher parameter efficiency of PRoLoRA.
arXiv Detail & Related papers (2024-02-24T13:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.