High-frequency near-eye ground truth for event-based eye tracking
- URL: http://arxiv.org/abs/2502.03057v1
- Date: Wed, 05 Feb 2025 10:35:15 GMT
- Title: High-frequency near-eye ground truth for event-based eye tracking
- Authors: Andrea Simpsi, Andrea Aspesi, Simone Mentasti, Luca Merigo, Tommaso Ongarello, Matteo Matteucci,
- Abstract summary: Event-based eye tracking is a promising solution for efficient and low-power eye tracking in smart eyewear technologies.
We introduce a semi-automatic annotation pipeline specifically designed for event-based data annotation.
- Score: 3.5997913466753366
- License:
- Abstract: Event-based eye tracking is a promising solution for efficient and low-power eye tracking in smart eyewear technologies. However, the novelty of event-based sensors has resulted in a limited number of available datasets, particularly those with eye-level annotations, crucial for algorithm validation and deep-learning training. This paper addresses this gap by presenting an improved version of a popular event-based eye-tracking dataset. We introduce a semi-automatic annotation pipeline specifically designed for event-based data annotation. Additionally, we provide the scientific community with the computed annotations for pupil detection at 200Hz.
Related papers
- EyeTrAES: Fine-grained, Low-Latency Eye Tracking via Adaptive Event Slicing [2.9795443606634917]
EyeTrAES is a novel approach using neuromorphic event cameras for high-fidelity tracking of natural pupillary movement.
We show that EyeTrAES boosts pupil tracking fidelity by 6+%, achieving IoU=92%, while incurring at least 3x lower latency than competing pure event-based eye tracking alternatives.
For robust user authentication, we train a lightweight per-user Random Forest classifier using a novel feature vector of short-term pupillary kinematics.
arXiv Detail & Related papers (2024-09-27T15:06:05Z) - Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality [2.2639735235640015]
This work provides an objective assessment of the impact of several contemporary machine learning (ML)-based methods for eye feature tracking.
Metrics include the accuracy and precision of the gaze estimate, as well as drop-out rate.
arXiv Detail & Related papers (2024-03-28T18:43:25Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Object-centric Cross-modal Feature Distillation for Event-based Object
Detection [87.50272918262361]
RGB detectors still outperform event-based detectors due to sparsity of the event data and missing visual details.
We develop a novel knowledge distillation approach to shrink the performance gap between these two modalities.
We show that object-centric distillation allows to significantly improve the performance of the event-based student object detector.
arXiv Detail & Related papers (2023-11-09T16:33:08Z) - 3ET: Efficient Event-based Eye Tracking using a Change-Based ConvLSTM
Network [12.697820427228573]
This paper presents a sparse Change-Based Congenerational Long ShortTerm Memory (CB-ConvLSTM) model for event-based eye tracking.
We leverage the benefits of retina-inspired event cameras, their low-latency response and sparse output stream, over traditional frame-based cameras.
arXiv Detail & Related papers (2023-08-22T20:24:24Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - Video Annotation for Visual Tracking via Selection and Refinement [74.08109740917122]
We present a new framework to facilitate bounding box annotations for video sequences.
A temporal assessment network is proposed which is able to capture the temporal coherence of target locations.
A visual-geometry refinement network is also designed to further enhance the selected tracking results.
arXiv Detail & Related papers (2021-08-09T05:56:47Z) - Bayesian Eye Tracking [63.21413628808946]
Model-based eye tracking is susceptible to eye feature detection errors.
We propose a Bayesian framework for model-based eye tracking.
Compared to state-of-the-art model-based and learning-based methods, the proposed framework demonstrates significant improvement in generalization capability.
arXiv Detail & Related papers (2021-06-25T02:08:03Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
Estimating eye-gaze from images alone is a challenging task due to un-observable person-specific factors.
We propose a novel dataset and accompanying method which aims to explicitly learn these semantic and temporal relationships.
We demonstrate that the fusion of information from visual stimuli as well as eye images can lead towards achieving performance similar to literature-reported figures.
arXiv Detail & Related papers (2020-07-26T12:39:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.