iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs
- URL: http://arxiv.org/abs/2502.03214v1
- Date: Wed, 05 Feb 2025 14:29:01 GMT
- Title: iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs
- Authors: Julius Mayer, Mohamad Ballout, Serwan Jassim, Farbod Nosrat Nezami, Elia Bruni,
- Abstract summary: Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment.<n>We introduce iVISPAR, an interactive multi-modal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents.
- Score: 4.381263829108405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment. To help overcome these limitations, we introduce iVISPAR, an interactive multi-modal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents. iVISPAR is based on a variant of the sliding tile puzzle-a classic problem that demands logical planning, spatial awareness, and multi-step reasoning. The benchmark supports visual 2D, 3D, and text-based input modalities, enabling comprehensive assessments of VLMs' planning and reasoning skills. We evaluate a broad suite of state-of-the-art open-source and closed-source VLMs, comparing their performance while also providing optimal path solutions and a human baseline to assess the task's complexity and feasibility for humans. Results indicate that while some VLMs perform well on simple spatial tasks, they encounter difficulties with more complex configurations and problem properties. Notably, while VLMs generally perform better in 2D vision compared to 3D or text-based representations, they consistently fall short of human performance, illustrating the persistent challenge of visual alignment. This highlights critical gaps in current VLM capabilities, highlighting their limitations in achieving human-level cognition.
Related papers
- Vision language models are unreliable at trivial spatial cognition [0.2902243522110345]
Vision language models (VLMs) are designed to extract relevant visuospatial information from images.
We develop a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs.
Results show that performance could be degraded by minor variations of prompts that use equivalent descriptions.
arXiv Detail & Related papers (2025-04-22T17:38:01Z) - CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation [53.452699232071495]
CrossWordBench is a benchmark designed to evaluate the reasoning capabilities of Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) through the medium of crossword puzzles.
Our evaluation reveals that reasoning LLMs outperform non-reasoning models substantially by effectively leveraging crossing-letter constraints.
Our findings offer insights into the limitations of the reasoning capabilities of current LLMs and LVLMs, and provide an effective approach for creating multimodal constrained tasks for future evaluations.
arXiv Detail & Related papers (2025-03-30T20:03:36Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.
We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.
We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task [3.2228025627337864]
We assess the performance of Vision-Language Models (VLMs) on the Bongard Openworld Problems benchmark.<n>We propose and evaluate three human-inspired paradigms: holistic analysis, deductive rule learning, and componential analysis.<n>Our results demonstrate that state-of-the-art models, including GPT-4o and Gemini, not only surpass human benchmarks but also excel in structured reasoning tasks.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models [57.92316645992816]
Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space.
We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs)
We demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
arXiv Detail & Related papers (2024-12-03T06:15:04Z) - BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games [44.16513620589459]
We introduce BALROG, a novel benchmark to assess the agentic capabilities of Large Language Models (LLMs) and Vision Language Models (VLMs)
Our benchmark incorporates a range of existing reinforcement learning environments with varying levels of difficulty, including tasks that are solvable by non-expert humans in seconds to extremely challenging ones that may take years to master.
Our findings indicate that while current models achieve partial success in the easier games, they struggle significantly with more challenging tasks.
arXiv Detail & Related papers (2024-11-20T18:54:32Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.<n>Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
Vision language models (VLMs) are an exciting emerging class of language models (LMs)
One understudied capability inVLMs is visual spatial planning.
Our study introduces a benchmark that evaluates the spatial planning capability in these models in general.
arXiv Detail & Related papers (2024-07-02T00:24:01Z) - Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs [83.24033574914425]
We present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving.
Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information.
Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks.
arXiv Detail & Related papers (2024-06-20T17:54:03Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.