Conditional Prediction by Simulation for Automated Driving
- URL: http://arxiv.org/abs/2502.03286v1
- Date: Wed, 05 Feb 2025 15:44:06 GMT
- Title: Conditional Prediction by Simulation for Automated Driving
- Authors: Fabian Konstantinidis, Moritz Sackmann, Ulrich Hofmann, Christoph Stiller,
- Abstract summary: This work introduces a prediction model that models the conditional dependencies between trajectories.
By assuming various candidate trajectories for the automated vehicle, we generate predictions conditioned on each of them.
- Score: 4.6557204473595055
- License:
- Abstract: Modular automated driving systems commonly handle prediction and planning as sequential, separate tasks, thereby prohibiting cooperative maneuvers. To enable cooperative planning, this work introduces a prediction model that models the conditional dependencies between trajectories. For this, predictions are generated by a microscopic traffic simulation, with the individual traffic participants being controlled by a realistic behavior model trained via Adversarial Inverse Reinforcement Learning. By assuming various candidate trajectories for the automated vehicle, we generate predictions conditioned on each of them. Furthermore, our approach allows the candidate trajectories to adapt dynamically during the prediction rollout. Several example scenarios are available at https://conditionalpredictionbysimulation.github.io/.
Related papers
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
We show that we can parameterize autoregressive closed-loop models without retraining.
We propose fully reactive closed-loop planning over discrete latent modes.
Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios.
arXiv Detail & Related papers (2024-03-12T01:00:52Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments [9.117828575880303]
This work proposes a deep learning methodology to combine prediction and planning.
A conditional GAN with the U-Net architecture is trained to predict two high-resolution image sequences.
Results demonstrate intuitive behavior in complex situations, such as lane changes amidst conflicting objectives.
arXiv Detail & Related papers (2023-10-11T17:57:13Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - ScePT: Scene-consistent, Policy-based Trajectory Predictions for
Planning [32.71073060698739]
Trajectory prediction is critical for autonomous systems that share environments with uncontrolled agents.
We present ScePT, a policy planning-based trajectory prediction model.
It explicitly enforces scene consistency and learns an agent interaction policy that can be used for conditional prediction.
arXiv Detail & Related papers (2022-06-18T00:00:02Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Scene Transformer: A unified multi-task model for behavior prediction
and planning [42.758178896204036]
We formulate a model for predicting the behavior of all agents jointly in real-world driving environments.
Inspired by recent language modeling approaches, we use a masking strategy as the query to our model.
We evaluate our approach on autonomous driving datasets for behavior prediction, and achieve state-of-the-art performance.
arXiv Detail & Related papers (2021-06-15T20:20:44Z) - Reactive motion planning with probabilistic safety guarantees [27.91467018272684]
This paper considers the problem of motion planning in environments with multiple uncontrolled agents.
A predictive model of the uncontrolled agents is trained to predict all possible trajectories within a short horizon based on the scenario.
The proposed approach is demonstrated in simulation in a scenario emulating autonomous highway driving.
arXiv Detail & Related papers (2020-11-06T20:37:15Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.