PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving
- URL: http://arxiv.org/abs/2311.08100v4
- Date: Mon, 22 Jul 2024 03:57:03 GMT
- Title: PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving
- Authors: Zhili Chen, Maosheng Ye, Shuangjie Xu, Tongyi Cao, Qifeng Chen,
- Abstract summary: PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
- Score: 57.89801036693292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new interaction mechanism of prediction and planning for end-to-end autonomous driving, called PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving), which considers the timestep-wise interaction to better integrate prediction and planning. An ego vehicle performs motion planning at each timestep based on the trajectory prediction of surrounding agents (e.g., vehicles and pedestrians) and its local road conditions. Unlike existing end-to-end autonomous driving frameworks, PPAD models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Prediction and Planning processes at every timestep, instead of a single sequential process of prediction followed by planning. Specifically, we design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. The experiments on the nuScenes benchmark show that our approach outperforms state-of-the-art methods.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Interactive Joint Planning for Autonomous Vehicles [19.479300967537675]
In interactive driving scenarios, the actions of one agent greatly influences those of its neighbors.
We present Interactive Joint Planning (IJP) that bridges MPC with learned prediction models.
IJP significantly outperforms the baselines that are either without joint optimization or running sampling-based planning.
arXiv Detail & Related papers (2023-10-27T17:48:25Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
This work presents a game-theoretic Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network policy as part of its predictive model.
Fundamental to the success of our method is the design of a novel multi-agent policy network that can steer a vehicle given the state of the surrounding agents and the map information.
arXiv Detail & Related papers (2022-04-05T17:58:18Z) - End-to-End Interactive Prediction and Planning with Optical Flow
Distillation for Autonomous Driving [16.340715765227475]
We propose an end-to-end interactive neural motion planner (INMP) for autonomous driving in this paper.
Our INMP first generates a feature map in bird's-eye-view space, which is then processed to detect other agents and perform interactive prediction and planning jointly.
Also, we adopt an optical flow distillation paradigm, which can effectively improve the network performance while still maintaining its real-time inference speed.
arXiv Detail & Related papers (2021-04-18T14:05:18Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.