論文の概要: Is In-Context Universality Enough? MLPs are Also Universal In-Context
- arxiv url: http://arxiv.org/abs/2502.03327v1
- Date: Wed, 05 Feb 2025 16:22:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:29:27.394403
- Title: Is In-Context Universality Enough? MLPs are Also Universal In-Context
- Title(参考訳): インコンテキストの普遍性は十分か? MLPはユニバーサルなインコンテキストでもある
- Authors: Anastasis Kratsios, Takashi Furuya,
- Abstract要約: コンテクストにおいて変換器は普遍的であり、コンテキストの任意の実数値連続関数を近似することができることを示す。
このことは、変圧器の成功は誘導バイアスや訓練安定性による可能性が高いことを示唆している。
- 参考スコア(独自算出の注目度): 8.517406772939292
- License:
- Abstract: The success of transformers is often linked to their ability to perform in-context learning. Recent work shows that transformers are universal in context, capable of approximating any real-valued continuous function of a context (a probability measure over $\mathcal{X}\subseteq \mathbb{R}^d$) and a query $x\in \mathcal{X}$. This raises the question: Does in-context universality explain their advantage over classical models? We answer this in the negative by proving that MLPs with trainable activation functions are also universal in-context. This suggests the transformer's success is likely due to other factors like inductive bias or training stability.
- Abstract(参考訳): トランスフォーマーの成功はしばしば、文脈内学習を行う能力と結びついている。
最近の研究は、変換子は文脈において普遍的であり、文脈の任意の実数値連続函数($\mathcal{X}\subseteq \mathbb{R}^d$ 上の確率測度)とクエリ $x\in \mathcal{X}$ を近似できることを示している。
文脈内普遍性は、古典的なモデルに対する彼らの優位性を説明できますか?
我々は、トレーニング可能なアクティベーション関数を持つMLPも普遍的なインコンテキストであることを証明することによって、これを否定的に答える。
このことは、変圧器の成功は、誘導バイアスや訓練安定性などの他の要因による可能性が高いことを示唆している。
関連論文リスト
- On the Role of Depth and Looping for In-Context Learning with Task Diversity [69.4145579827826]
多様なタスクを伴う線形回帰のための文脈内学習について検討する。
We show that multilayer Transformer is not robust to even distributional shifts as $O(e-L)$ in Wasserstein distance。
論文 参考訳(メタデータ) (2024-10-29T03:27:56Z) - Can Transformers Learn $n$-gram Language Models? [77.35809823602307]
2種類のランダムな$n$-gram LMを学習するトランスフォーマーの能力について検討する。
例えば、$n$-gram LMに対する古典的な推定手法として、add-$lambda$ smoothing outperform transformerがある。
論文 参考訳(メタデータ) (2024-10-03T21:21:02Z) - Towards Better Understanding of In-Context Learning Ability from In-Context Uncertainty Quantification [7.869708570399577]
条件付き期待値 $mathbbE[Y|X]$ と条件付き分散 Var$(Y|X)$ の両方を予測する双目的予測タスクを考える。
理論的には、トレーニングされたトランスフォーマーがベイズ最適付近に到達し、トレーニング分布の情報の利用が示唆される。
論文 参考訳(メタデータ) (2024-05-24T00:08:55Z) - Transformers Can Represent $n$-gram Language Models [56.06361029539347]
本稿では,言語モデルの単純かつ歴史的なクラスであるトランスフォーマーLMと$n$-gram LMの関係に注目した。
ハードまたはスパースアテンション機構を用いたトランスフォーマーLMは,任意の$n$-gram LMを正確に表現できることを示す。
論文 参考訳(メタデータ) (2024-04-23T12:51:37Z) - In-Context Learning through the Bayesian Prism [16.058624485018207]
In-context Learning (ICL) は、大きな言語モデルの驚くべき特徴の1つである。
本稿では,このベイズ的視点がICLの理解にどの程度役立つのかを実証的に検討する。
論文 参考訳(メタデータ) (2023-06-08T02:38:23Z) - A Closer Look at In-Context Learning under Distribution Shifts [24.59271215602147]
線形回帰の単純かつ基本的なタスクのレンズから、文脈内学習の一般性と限界をよりよく理解することを目的としている。
変圧器とセットベース分布の両方が, 正規最小二乗(OLS)の性能をより密にエミュレートし, 文脈内学習による分布評価を行うことがわかった。
トランスフォーマーはまた、セットベースの分散がフェーターとなる、軽微な分散シフトに対するレジリエンスも向上している。
論文 参考訳(メタデータ) (2023-05-26T07:47:21Z) - Provable General Function Class Representation Learning in Multitask
Bandits and MDPs [58.624124220900306]
マルチタスク表現学習は、サンプル効率を高めるために強化学習において一般的なアプローチである。
本研究では,解析結果を一般関数クラス表現に拡張する。
バンディットと線形MDPの一般関数クラスにおけるマルチタスク表現学習の利点を理論的に検証する。
論文 参考訳(メタデータ) (2022-05-31T11:36:42Z) - Is Supervised Syntactic Parsing Beneficial for Language Understanding?
An Empirical Investigation [71.70562795158625]
従来のNLPは、高レベルセマンティック言語理解(LU)の成功に必要な構文解析を長い間保持(教師付き)してきた。
近年のエンドツーエンドニューラルネットワークの出現、言語モデリング(LM)による自己監視、および幅広いLUタスクにおける成功は、この信念に疑問を投げかけている。
本研究では,LM-Pretrained Transformer Network の文脈における意味的LUに対する教師あり構文解析の有用性を実証的に検討する。
論文 参考訳(メタデータ) (2020-08-15T21:03:36Z) - Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
Approximators [72.62940905965267]
結合フロー(CF-INN)に基づく可逆ニューラルネットワークは、画像合成や表現学習など、さまざまな機械学習応用を有する。
CF-INNは可逆関数に対する普遍近似器か?
我々は、ある微分同相類に対する普遍性の同値性を示す一般的な定理を証明する。
論文 参考訳(メタデータ) (2020-06-20T02:07:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。