Adaptive Variational Inference in Probabilistic Graphical Models: Beyond Bethe, Tree-Reweighted, and Convex Free Energies
- URL: http://arxiv.org/abs/2502.03341v1
- Date: Wed, 05 Feb 2025 16:33:59 GMT
- Title: Adaptive Variational Inference in Probabilistic Graphical Models: Beyond Bethe, Tree-Reweighted, and Convex Free Energies
- Authors: Harald Leisenberger, Franz Pernkopf,
- Abstract summary: We analyze two classes of approximations that include the above methods as special cases.
We propose approximations that automatically adapt to a given model and demonstrate their effectiveness for a range of difficult problems.
- Score: 11.08731776888252
- License:
- Abstract: Variational inference in probabilistic graphical models aims to approximate fundamental quantities such as marginal distributions and the partition function. Popular approaches are the Bethe approximation, tree-reweighted, and other types of convex free energies. These approximations are efficient but can fail if the model is complex and highly interactive. In this work, we analyze two classes of approximations that include the above methods as special cases: first, if the model parameters are changed; and second, if the entropy approximation is changed. We discuss benefits and drawbacks of either approach, and deduce from this analysis how a free energy approximation should ideally be constructed. Based on our observations, we propose approximations that automatically adapt to a given model and demonstrate their effectiveness for a range of difficult problems.
Related papers
- Likelihood approximations via Gaussian approximate inference [3.4991031406102238]
We propose efficient schemes to approximate the effects of non-Gaussian likelihoods by Gaussian densities.
Our results attain good approximation quality for binary and multiclass classification in large-scale point-estimate and distributional inferential settings.
As a by-product, we show that the proposed approximate log-likelihoods are a superior alternative to least-squares on raw labels for neural network classification.
arXiv Detail & Related papers (2024-10-28T05:39:26Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - PSD Representations for Effective Probability Models [117.35298398434628]
We show that a recently proposed class of positive semi-definite (PSD) models for non-negative functions is particularly suited to this end.
We characterize both approximation and generalization capabilities of PSD models, showing that they enjoy strong theoretical guarantees.
Our results open the way to applications of PSD models to density estimation, decision theory and inference.
arXiv Detail & Related papers (2021-06-30T15:13:39Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Additive interaction modelling using I-priors [0.571097144710995]
We introduce a parsimonious specification of models with interactions, which has two benefits.
It reduces the number of scale parameters and thus facilitates the estimation of models with interactions.
arXiv Detail & Related papers (2020-07-30T22:52:22Z) - Lifted Hybrid Variational Inference [31.441922284854893]
We investigate two approximate lifted variational approaches that are applicable to hybrid domains.
We demonstrate that the proposed variational methods are both scalable and can take advantage of approximate model symmetries.
We present a sufficient condition for the Bethe approximation to yield a non-trivial estimate over the marginal polytope.
arXiv Detail & Related papers (2020-01-08T22:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.