論文の概要: Prediction of the Most Fire-Sensitive Point in Building Structures with Differentiable Agents for Thermal Simulators
- arxiv url: http://arxiv.org/abs/2502.03424v2
- Date: Mon, 10 Mar 2025 21:24:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 18:30:33.068835
- Title: Prediction of the Most Fire-Sensitive Point in Building Structures with Differentiable Agents for Thermal Simulators
- Title(参考訳): 温度シミュレータ用異種剤を用いた建築構造物の火災感応点の予測
- Authors: Yuan Xinjie, Khalid M. Mosalam,
- Abstract要約: 本稿では,MFSP(Mest Fire-Sensitive Point)の概念と,その識別のための効率的な機械学習フレームワークを提案する。
MFSPは、火災が開始すれば建物の安定性に最も深刻な有害な影響をもたらす場所と定義されている。
本フレームワークでは,従来の有限要素解析(FEA)シミュレータにおいて,グラフニューラルネットワーク(GNN)が効率的かつ微分可能なエージェントとして機能する。
- 参考スコア(独自算出の注目度): 0.0789257770465417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fire safety is crucial for ensuring the stability of building structures, yet evaluating whether a structure meets fire safety requirement is challenging. Fires can originate at any point within a structure, and simulating every potential fire scenario is both expensive and time-consuming. To address this challenge, we propose the concept of the Most Fire-Sensitive Point (MFSP) and an efficient machine learning framework for its identification. The MFSP is defined as the location at which a fire, if initiated, would cause the most severe detrimental impact on the building's stability, effectively representing the worst-case fire scenario. In our framework, a Graph Neural Network (GNN) serves as an efficient and differentiable agent for conventional Finite Element Analysis (FEA) simulators by predicting the Maximum Interstory Drift Ratio (MIDR) under fire, which then guides the training and evaluation of the MFSP predictor. Additionally, we enhance our framework with a novel edge update mechanism and a transfer learning-based training scheme. Evaluations on a large-scale simulation dataset demonstrate the good performance of the proposed framework in identifying the MFSP, offering a transformative tool for optimizing fire safety assessments in structural design. All developed datasets and codes are open-sourced online.
- Abstract(参考訳): 建築物の安定性を確保するためには, 火災の安全性が重要であるが, 構造物が火災の安全要件を満たしているかどうかを評価することは困難である。
火災は構造内のあらゆる点で発生しうるし、潜在的な火災シナリオをシミュレートすることは費用も時間もかかる。
この課題に対処するため,本研究では,MFSP(Mest Fire-Sensitive Point)の概念と,その識別のための効率的な機械学習フレームワークを提案する。
MFSPは、火災が開始すれば建物の安定性に最も深刻な有害な影響をもたらし、最悪の火災シナリオを効果的に表す場所として定義される。
本フレームワークでは,従来の有限要素解析(FEA)シミュレータにおいて,火災時の最大層間ドリフト比(MIDR)を予測し,MFSP予測器のトレーニングと評価を導くことにより,グラフニューラルネットワーク(GNN)が効率的かつ微分可能なエージェントとして機能する。
さらに,新たなエッジ更新機構とトランスファーラーニングベースのトレーニングスキームにより,フレームワークを強化した。
大規模シミュレーションデータセットの評価は,構造設計における火災安全評価を最適化するための変換ツールとして,MFSPを同定する上で,提案手法の優れた性能を示すものである。
開発されたデータセットとコードはすべて、オンラインで公開されている。
関連論文リスト
- Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning [49.68790647579509]
Federated Ranking Learning (FRL) は最先端のFLフレームワークであり、通信効率と中毒攻撃に対するレジリエンスで際立っている。
Vulnerable Edge Manipulation (VEM) 攻撃という, FRLに対する新たな局所モデル中毒攻撃を導入する。
我々の攻撃は、全体的な53.23%の攻撃効果を達成し、既存の方法よりも3.7倍のインパクトを与える。
論文 参考訳(メタデータ) (2025-03-12T00:38:14Z) - Adversarial Training for Defense Against Label Poisoning Attacks [53.893792844055106]
ラベル中毒攻撃は機械学習モデルに重大なリスクをもたらす。
本稿では,これらの脅威に対処するために,サポートベクトルマシン(SVM)に基づく新たな対角的防御戦略を提案する。
提案手法は, 様々なモデルアーキテクチャに対応し, カーネルSVMを用いた予測勾配降下アルゴリズムを用いて, 対向学習を行う。
論文 参考訳(メタデータ) (2025-02-24T13:03:19Z) - TopoFR: A Closer Look at Topology Alignment on Face Recognition [42.936929062768826]
PTSAと呼ばれるトポロジカル構造アライメント戦略とSDEという硬質試料マイニング戦略を利用する新しいFRモデルであるTopoFRを提案する。
PTSAは永続ホモロジーを用いて入力空間と潜在空間の位相構造を整列し、構造情報を効果的に保存し、FRモデルの一般化性能を向上させる。
一般的な顔のベンチマーク実験の結果は、最先端の手法よりもTopoFRの方が優れていることを示している。
論文 参考訳(メタデータ) (2024-10-14T14:58:30Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
我々は,電力システム(PS)におけるグラフニューラルネットワーク(GNN)のための,最初のシミュレータに依存しない,安全指向のフレームワークであるSafePowerGraphを紹介する。
SafePowerGraphは複数のPFシミュレータとOPFシミュレータを統合し、エネルギー価格の変動や電力線停止など、さまざまなシナリオでGNNのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-07-17T09:01:38Z) - Where to Mask: Structure-Guided Masking for Graph Masked Autoencoders [43.53816382180551]
グラフマスク付きオートエンコーダ(GMAE)は、グラフ構造化データに対する自己教師付き事前学習の大幅な進歩として登場した。
本稿では,既存のGMAEモデルの改良を目的とした,構造誘導型マスキング戦略(StructMAE)を提案する。
我々のStructMAE法は、教師なしと転送学習の両方において、既存の最先端のGMAEモデルより優れています。
論文 参考訳(メタデータ) (2024-04-24T11:11:02Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Comparison of metaheuristics for the firebreak placement problem: a
simulation-based optimization approach [0.0]
火災発生の問題は防火に不可欠である。
したがって、発火から絶滅まで予測不可能な火災の性質を考える必要がある。
シミュレーションに基づく最適化の観点から,この問題に対する解法を提案する。
論文 参考訳(メタデータ) (2023-11-29T06:45:07Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
森林火災は生命、財産、生態学、文化遺産、重要なインフラに脅威をもたらす。
SimFireは、現実的な山火事シナリオを生成するために設計された、多用途の野火投射シミュレータである。
SimHarnessはモジュール型のエージェントベースの機械学習ラッパーで、自動的に土地管理戦略を生成することができる。
論文 参考訳(メタデータ) (2023-11-27T15:37:05Z) - Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management [2.158876211806538]
本稿では,所定の火災を迅速にエミュレーションできる機械学習(ML)フレームワークを提案する。
ドメイン知識を取り入れることで,データ共有シナリオにおける燃料密度推定の物理的不整合を低減することができる。
また,階層構造を組み込んだ火災拡散指標の偏り推定の問題も克服した。
論文 参考訳(メタデータ) (2023-10-02T19:38:04Z) - Stochastic stiffness identification and response estimation of
Timoshenko beams via physics-informed Gaussian processes [0.0]
本稿では,ティモシェンコビーム素子に対する物理インフォームドガウス過程(GP)モデルを提案する。
提案手法は, 構造パラメータの同定に有効であり, 異種・多要素センサからのデータを融合することができる。
論文 参考訳(メタデータ) (2023-09-21T08:22:12Z) - Synergistic Signal Denoising for Multimodal Time Series of Structure
Vibration [9.144905626316534]
本稿では,構造的健康モニタリング(SHM)で広く用いられているマルチモーダル振動信号に固有の複雑さに適した,新しいディープラーニングアルゴリズムを提案する。
畳み込みと再帰的なアーキテクチャの融合により、アルゴリズムは局所化と長期化の両方の構造挙動を順応的にキャプチャする。
以上の結果から,複数のSHMシナリオにおける予測精度,早期損傷検出,適応性に有意な改善が認められた。
論文 参考訳(メタデータ) (2023-08-17T00:41:50Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - $\clubsuit$ CLOVER $\clubsuit$: Probabilistic Forecasting with Coherent Learning Objective Reparameterization [42.215158938066054]
MQForecasterニューラルネットワークアーキテクチャを多変量ガウス因子モデルで拡張し,構築によるコヒーレンスを実現する。
我々はこの手法をCLOVER(Coherent Learning Objective Reparametrization Neural Network)と呼ぶ。
CLOVERは最先端のコヒーレント予測手法と比較して,スケールしたCRPS予測精度が15%向上した。
論文 参考訳(メタデータ) (2023-07-19T07:31:37Z) - FSDNet-An efficient fire detection network for complex scenarios based
on YOLOv3 and DenseNet [8.695064779659031]
本稿では,特徴抽出モジュール,火災分類モジュール,火災検出モジュールから構成されるFSDNet(Fire Smoke Detection Network)を提案する。
2つのベンチマークデータセットにおけるFSDNetの精度は、それぞれ99.82%と91.15%であり、MS-FSの平均精度は86.80%である。
論文 参考訳(メタデータ) (2023-04-15T15:46:08Z) - Wildfire risk forecast: An optimizable fire danger index [0.0]
森林火災は世界中の多くの地域で深刻な被害をもたらしており、気候変動によって増加すると予想されている。
火災リスク指標は、火災のリスクを予測するために天気予報を使用する。
火災リスク指標の予測は、リスクの高い場所で資源を割り当てるために使用することができる。
そこで本研究では,勾配降下による内部パラメータの最適化が可能な微分可能な関数として,一指標(NFDRS IC)の新たな実装を提案する。
論文 参考訳(メタデータ) (2022-03-28T14:08:49Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
本稿では、時系列電気予測モデルの開発のためのインテリジェント自動アーキテクチャサーチ(IAAS)フレームワークを提案する。
提案フレームワークは,ネットワーク機能保存変換操作,強化学習(RL)に基づくネットワーク変換制御,ネットワークスクリーニングの3つの主要コンポーネントを含む。
提案したIAASフレームワークは,精度と安定性の予測において,既存の10のモデルや手法を著しく上回っていることを実証する。
論文 参考訳(メタデータ) (2022-03-25T10:36:27Z) - Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics [0.0]
森林火災伝播のダイナミクスをモデル化するために,畳み込み長短期記憶リカレントニューラルネットワークの有効性を評価する。
その結果,convlstmsは局所的な火災伝達イベントを捕捉できるだけでなく,火の拡散率など全体の火災動態を把握できることがわかった。
論文 参考訳(メタデータ) (2020-12-11T23:31:43Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。