TensorQC: Towards Scalable Distributed Quantum Computing via Tensor Networks
- URL: http://arxiv.org/abs/2502.03445v1
- Date: Wed, 05 Feb 2025 18:42:07 GMT
- Title: TensorQC: Towards Scalable Distributed Quantum Computing via Tensor Networks
- Authors: Wei Tang, Margaret Martonosi,
- Abstract summary: A quantum processing unit (QPU) must contain a large number of high quality qubits to produce accurate results.
Most scientific and industry classical computation workloads happen in parallel on distributed systems.
This paper demonstrates running benchmarks that are otherwise intractable for a standalone QPU and prior circuit cutting techniques.
- Score: 16.609478015737707
- License:
- Abstract: A quantum processing unit (QPU) must contain a large number of high quality qubits to produce accurate results for problems at useful scales. In contrast, most scientific and industry classical computation workloads happen in parallel on distributed systems, which rely on copying data across multiple cores. Unfortunately, copying quantum data is theoretically prohibited due to the quantum non-cloning theory. Instead, quantum circuit cutting techniques cut a large quantum circuit into multiple smaller subcircuits, distribute the subcircuits on parallel QPUs and reconstruct the results with classical computing. Such techniques make distributed hybrid quantum computing (DHQC) a possibility but also introduce an exponential classical co-processing cost in the number of cuts and easily become intractable. This paper presents TensorQC, which leverages classical tensor networks to bring an exponential runtime advantage over state-of-the-art parallelization post-processing techniques. As a result, this paper demonstrates running benchmarks that are otherwise intractable for a standalone QPU and prior circuit cutting techniques. Specifically, this paper runs six realistic benchmarks using QPUs available nowadays and a single GPU, and reduces the QPU size and quality requirements by more than $10\times$ over purely quantum platforms.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Parallelizing Quantum-Classical Workloads: Profiling the Impact of
Splitting Techniques [4.741651490006498]
We evaluate two workload splitting techniques on IBM's Quantum Cloud.
We see that (1) VQE with circuit cutting is 39% better in ground state estimation than the uncut version, and (2) QSVM that combines data parallelization with reduced feature set yields upto 3x improvement in quantum workload execution time.
arXiv Detail & Related papers (2023-05-11T05:46:55Z) - ScaleQC: A Scalable Framework for Hybrid Computation on Quantum and
Classical Processors [25.18520278107402]
Quantum processing unit (QPU) has to satisfy highly demanding quantity and quality requirements on its qubits.
Quantum circuit cutting techniques cut and distribute a large quantum circuit into multiple smaller subcircuits feasible for less powerful QPUs.
Our tool, called ScaleQC, addresses the bottlenecks by developing novel algorithmic techniques.
arXiv Detail & Related papers (2022-07-03T01:44:31Z) - Cutting Quantum Circuits to Run on Quantum and Classical Platforms [25.18520278107402]
CutQC is a scalable hybrid computing approach that distributes a large quantum circuit onto quantum (QPU) and classical platforms ( CPU or GPU) for co-processing.
It achieves much higher quantum circuit evaluation fidelity than the large NISQ devices achieve in real-system runs.
arXiv Detail & Related papers (2022-05-12T02:09:38Z) - Qurzon: A Prototype for a Divide and Conquer Based Quantum Compiler [2.8873930745906957]
This paper introduces textbfQurzon, a proposed novel quantum compiler.
It incorporates the marriage of techniques of divide and compute with the state-of-the-art algorithms of optimal qubit placement.
A scheduling algorithm is also introduced within the compiler that can explore the power of distributed quantum computing.
arXiv Detail & Related papers (2021-09-15T04:53:04Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.