Cutting Quantum Circuits to Run on Quantum and Classical Platforms
- URL: http://arxiv.org/abs/2205.05836v1
- Date: Thu, 12 May 2022 02:09:38 GMT
- Title: Cutting Quantum Circuits to Run on Quantum and Classical Platforms
- Authors: Wei Tang, Margaret Martonosi
- Abstract summary: CutQC is a scalable hybrid computing approach that distributes a large quantum circuit onto quantum (QPU) and classical platforms ( CPU or GPU) for co-processing.
It achieves much higher quantum circuit evaluation fidelity than the large NISQ devices achieve in real-system runs.
- Score: 25.18520278107402
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computing (QC) offers a new computing paradigm that has the potential
to provide significant speedups over classical computing. Each additional qubit
doubles the size of the computational state space available to a quantum
algorithm. Such exponentially expanding reach underlies QC's power, but at the
same time puts demanding requirements on the quantum processing units (QPU)
hardware. On the other hand, purely classical simulations of quantum circuits
on either central processing unit (CPU) or graphics processing unit (GPU) scale
poorly as they quickly become bottlenecked by runtime and memory. This paper
introduces CutQC, a scalable hybrid computing approach that distributes a large
quantum circuit onto quantum (QPU) and classical platforms (CPU or GPU) for
co-processing. CutQC demonstrates evaluation of quantum circuits that are
larger than the limit of QPU or classical simulation, and achieves much higher
quantum circuit evaluation fidelity than the large NISQ devices achieve in
real-system runs.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - A Uniform Quantum Computing Model Based on Virtual Quantum Processors [0.0]
We propose a virtual quantum processor that emulates a generic hybrid quantum machine.
This hybrid machine powers quantum-logical computations which are substitutable by future native quantum processors.
arXiv Detail & Related papers (2023-02-24T17:07:37Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - ScaleQC: A Scalable Framework for Hybrid Computation on Quantum and
Classical Processors [25.18520278107402]
Quantum processing unit (QPU) has to satisfy highly demanding quantity and quality requirements on its qubits.
Quantum circuit cutting techniques cut and distribute a large quantum circuit into multiple smaller subcircuits feasible for less powerful QPUs.
Our tool, called ScaleQC, addresses the bottlenecks by developing novel algorithmic techniques.
arXiv Detail & Related papers (2022-07-03T01:44:31Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.