A Schema-Guided Reason-while-Retrieve framework for Reasoning on Scene Graphs with Large-Language-Models (LLMs)
- URL: http://arxiv.org/abs/2502.03450v1
- Date: Wed, 05 Feb 2025 18:50:38 GMT
- Title: A Schema-Guided Reason-while-Retrieve framework for Reasoning on Scene Graphs with Large-Language-Models (LLMs)
- Authors: Yiye Chen, Harpreet Sawhney, Nicholas Gydé, Yanan Jian, Jack Saunders, Patricio Vela, Ben Lundell,
- Abstract summary: SceneGuided RetrieveRwR is a framework for reasoning and planning with graphs.
We show that our framework surpasses existing LLM-based approaches in numerical Q&A and planning tasks.
- Score: 5.37125692728042
- License:
- Abstract: Scene graphs have emerged as a structured and serializable environment representation for grounded spatial reasoning with Large Language Models (LLMs). In this work, we propose SG-RwR, a Schema-Guided Retrieve-while-Reason framework for reasoning and planning with scene graphs. Our approach employs two cooperative, code-writing LLM agents: a (1) Reasoner for task planning and information queries generation, and a (2) Retriever for extracting corresponding graph information following the queries. Two agents collaborate iteratively, enabling sequential reasoning and adaptive attention to graph information. Unlike prior works, both agents are prompted only with the scene graph schema rather than the full graph data, which reduces the hallucination by limiting input tokens, and drives the Reasoner to generate reasoning trace abstractly.Following the trace, the Retriever programmatically query the scene graph data based on the schema understanding, allowing dynamic and global attention on the graph that enhances alignment between reasoning and retrieval. Through experiments in multiple simulation environments, we show that our framework surpasses existing LLM-based approaches in numerical Q\&A and planning tasks, and can benefit from task-level few-shot examples, even in the absence of agent-level demonstrations. Project code will be released.
Related papers
- Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
Large Language Models (LLMs) have demonstrated exceptional abilities in reasoning for task planning.
This paper introduces a novel paradigm, plan-over-graph, in which the model first decomposes a real-life textual task into executable subtasks and constructs an abstract task graph.
The model then understands this task graph as input and generates a plan for parallel execution.
arXiv Detail & Related papers (2025-02-20T13:47:51Z) - A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
Large language models (LLMs) are reorganizing in the AI community for their expected reasoning and inference abilities.
We believe this kind of parametric representation of graphs, graph laws, can be a solution for making LLMs understand graph data as the input.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
We introduce GraphAgent-Reasoner, a fine-tuning-free framework for explicit and precise graph reasoning.
Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents.
Our framework demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
arXiv Detail & Related papers (2024-10-07T15:34:14Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
Large Language Models (LLMs) struggle with comprehending graphical structure information through prompts of graph description sequences.
We propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information.
arXiv Detail & Related papers (2024-09-05T05:34:16Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Location-Free Scene Graph Generation [45.366540803729386]
Scene Graph Generation (SGG) is a visual understanding task, aiming to describe a scene as a graph of entities and their relationships with each other.
Existing works rely on location labels in form of bounding boxes or segmentation masks, increasing annotation costs and limiting dataset expansion.
We break this dependency and introduce location-free scene graph generation (LF-SGG)
This new task aims at predicting instances of entities, as well as their relationships, without the explicit calculation of their spatial localization.
arXiv Detail & Related papers (2023-03-20T08:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.