Efficient Global Neural Architecture Search
- URL: http://arxiv.org/abs/2502.03553v1
- Date: Wed, 05 Feb 2025 19:10:17 GMT
- Title: Efficient Global Neural Architecture Search
- Authors: Shahid Siddiqui, Christos Kyrkou, Theocharis Theocharides,
- Abstract summary: We propose an architecture-aware approximation with variable training schemes for different networks.
Our proposed framework achieves a new state-of-the-art on EMNIST and KMNIST, while being highly competitive on the CIFAR-10, CIFAR-100, and FashionMNIST datasets.
- Score: 2.0973843981871574
- License:
- Abstract: Neural architecture search (NAS) has shown promise towards automating neural network design for a given task, but it is computationally demanding due to training costs associated with evaluating a large number of architectures to find the optimal one. To speed up NAS, recent works limit the search to network building blocks (modular search) instead of searching the entire architecture (global search), approximate candidates' performance evaluation in lieu of complete training, and use gradient descent rather than naturally suitable discrete optimization approaches. However, modular search does not determine network's macro architecture i.e. depth and width, demanding manual trial and error post-search, hence lacking automation. In this work, we revisit NAS and design a navigable, yet architecturally diverse, macro-micro search space. In addition, to determine relative rankings of candidates, existing methods employ consistent approximations across entire search spaces, whereas different networks may not be fairly comparable under one training protocol. Hence, we propose an architecture-aware approximation with variable training schemes for different networks. Moreover, we develop an efficient search strategy by disjoining macro-micro network design that yields competitive architectures in terms of both accuracy and size. Our proposed framework achieves a new state-of-the-art on EMNIST and KMNIST, while being highly competitive on the CIFAR-10, CIFAR-100, and FashionMNIST datasets and being 2-4x faster than the fastest global search methods. Lastly, we demonstrate the transferability of our framework to real-world computer vision problems by discovering competitive architectures for face recognition applications.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
We develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture.
We find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search.
arXiv Detail & Related papers (2023-06-01T02:06:13Z) - Search Space Adaptation for Differentiable Neural Architecture Search in
Image Classification [15.641353388251465]
Differentiable neural architecture search (NAS) has a great impact by reducing the search cost to the level of training a single network.
In this paper, we propose an adaptation scheme of the search space by introducing a search scope.
The effectiveness of proposed method is demonstrated with ProxylessNAS for the image classification task.
arXiv Detail & Related papers (2022-06-05T05:27:12Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - Enhanced Gradient for Differentiable Architecture Search [17.431144144044968]
We propose a neural network architecture search algorithm aiming to simultaneously improve network performance and reduce network complexity.
The proposed framework automatically builds the network architecture at two stages: block-level search and network-level search.
Experiment results demonstrate that our method outperforms all evaluated hand-crafted networks in image classification.
arXiv Detail & Related papers (2021-03-23T13:27:24Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
We formulate neural architecture search as a sparse coding problem.
In experiments, our two-stage method on CIFAR-10 requires only 0.05 GPU-day for search.
Our one-stage method produces state-of-the-art performances on both CIFAR-10 and ImageNet at the cost of only evaluation time.
arXiv Detail & Related papers (2020-10-13T04:34:24Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.