Page Curve and Entanglement Dynamics in an Interacting Fermionic Chain
- URL: http://arxiv.org/abs/2502.03563v2
- Date: Thu, 13 Feb 2025 09:05:07 GMT
- Title: Page Curve and Entanglement Dynamics in an Interacting Fermionic Chain
- Authors: Rishabh Jha, Salvatore R. Manmana, Stefan Kehrein,
- Abstract summary: We investigate such Page-like behavior of the von Neumann entropy in a model of strongly correlated spinless fermions.
In the presence of interactions, a scaling analysis gives a non-zero critical time for the non-analyticity in the thermodynamic limit.
We present a physical picture explaining these findings.
- Score: 0.0
- License:
- Abstract: Generic non-equilibrium many-body systems display a linear growth of bipartite entanglement entropy in time, followed by a volume law saturation. In stark contrast, the Page curve dynamics of black hole physics shows that the entropy peaks at the Page time $t_{\text{Page}}$ and then decreases to zero. Here, we investigate such Page-like behavior of the von Neumann entropy in a model of strongly correlated spinless fermions in a typical system-environment setup, and characterize the properties of the Page curve dynamics in the presence of interactions using numerically exact matrix product states methods. The two phases of growth, namely the linear growth and the bending down, are shown to be separated by a non-analyticity in the min-entropy before $t_{\text{Page}}$, which separates two different quantum phases, realized as the respective ground states of the corresponding entanglement (or equivalently, modular) Hamiltonian. We confirm and generalize, by introducing interactions, the findings of \href{https://journals.aps.org/prb/abstract/10.1103/PhysRevB.109.224308}{Phys. Rev. B 109, 224308 (2024)} for a free spinless fermionic chain where the corresponding entanglement Hamiltonian undergoes a quantum phase transition at the point of non-analyticity. However, in the presence of interactions, a scaling analysis gives a non-zero critical time for the non-analyticity in the thermodynamic limit only for weak to intermediate interaction strengths, while the dynamics leading to the non-analyticity becomes \textit{instantaneous} for interactions large enough. We present a physical picture explaining these findings.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy scaling under quantum entanglement jumps.
We show that by tuning the system parameters, a measurement-induced transition occurs where the entanglement entropy changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Interface dynamics in the two-dimensional quantum Ising model [0.0]
We show that the dynamics of interfaces, in the symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of ergodicity breaking.
We present a detailed analysis of the evolution of these interfaces both on the lattice and in a suitable continuum limit.
The implications of our work for the classic problem of the decay of a false vacuum are also discussed.
arXiv Detail & Related papers (2022-09-19T13:08:58Z) - A dynamical theory for one-dimensional fermions with strong two-body
losses: universal non-Hermitian Zeno physics and spin-charge separation [0.0]
We study an interacting one-dimensional gas of spin-1/2 fermions with two-body losses.
We show how the two non-equilibrium evolutions build up drastically different charge correlations.
arXiv Detail & Related papers (2022-06-14T13:31:33Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Engineered dissipation induced entanglement transition in quantum spin
chains: from logarithmic growth to area law [0.0]
Recent theoretical work has shown that the competition between coherent unitary dynamics and measurements can give rise to transitions in the entanglement scaling.
We consider an engineered dissipation, which stabilizes an entangled phase of a quantum spin$-1/2$ chain.
We find that the system undergoes an entanglement transition from a logarithmic growth to an area law when the competition ratio between the unitary evolution and the non-unitary dynamics increases.
arXiv Detail & Related papers (2021-06-18T12:41:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.