論文の概要: A Multi-Task Learning Approach to Linear Multivariate Forecasting
- arxiv url: http://arxiv.org/abs/2502.03571v2
- Date: Sat, 15 Mar 2025 08:39:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:34:38.061175
- Title: A Multi-Task Learning Approach to Linear Multivariate Forecasting
- Title(参考訳): 線形多変量予測に対するマルチタスク学習手法
- Authors: Liran Nochumsohn, Hedi Zisling, Omri Azencot,
- Abstract要約: 最近の最先端の研究はディバイソン間の相互関係を無視し、それぞれのディバイソンでモデルを用いている。
本稿では,多変量予測をマルチタスク学習問題とみなし,予測の分析を容易にすることを提案する。
我々は,強いベースラインと比較して,挑戦的なベンチマークに対するアプローチを評価する。
- 参考スコア(独自算出の注目度): 4.369550829556578
- License:
- Abstract: Accurate forecasting of multivariate time series data is important in many engineering and scientific applications. Recent state-of-the-art works ignore the inter-relations between variates, using their model on each variate independently. This raises several research questions related to proper modeling of multivariate data. In this work, we propose to view multivariate forecasting as a multi-task learning problem, facilitating the analysis of forecasting by considering the angle between task gradients and their balance. To do so, we analyze linear models to characterize the behavior of tasks. Our analysis suggests that tasks can be defined by grouping similar variates together, which we achieve via a simple clustering that depends on correlation-based similarities. Moreover, to balance tasks, we scale gradients with respect to their prediction error. Then, each task is solved with a linear model within our MTLinear framework. We evaluate our approach on challenging benchmarks in comparison to strong baselines, and we show it obtains on-par or better results on multivariate forecasting problems. The implementation is available at: https://github.com/azencot-group/MTLinear
- Abstract(参考訳): 多変量時系列データの正確な予測は多くの工学的・科学的応用において重要である。
最近の最先端の研究は、変数間の相互関係を無視し、各変数のモデルを独立して利用している。
これにより、多変量データの適切なモデリングに関するいくつかの研究の疑問が提起される。
本研究では,多変量予測をマルチタスク学習問題とみなし,タスク勾配とバランスの角度を考慮した予測分析を容易にすることを提案する。
そこで我々は線形モデルを解析し,タスクの振る舞いを特徴付ける。
分析の結果,類似した変数をグループ化することで,相関に基づく類似性に依存する単純なクラスタリングによってタスクを定義できることが示唆された。
さらに,タスクのバランスをとるために,予測誤差に対して勾配を拡大する。
次に,MTLinearフレームワーク内の線形モデルを用いて各タスクを解く。
我々は,強いベースラインと比較して,挑戦的ベンチマークに対するアプローチを評価するとともに,多変量予測問題において,より優れた結果が得られることを示す。
実装は以下の通りである。 https://github.com/azencot-group/MTLinear
関連論文リスト
- Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
我々は,マルチタスク最適化問題を正規化手法として定式化し,マルチタスク学習情報を活用することを可能とする。
線形モデルの文脈におけるマルチタスク最適化のための閉形式解を導出する。
論文 参考訳(メタデータ) (2024-06-14T17:59:25Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
様々な情報源からの要約統計を利用した柔軟なマルチタスク学習フレームワークを提案する。
また,Lepskiの手法の変種に基づく適応パラメータ選択手法を提案する。
この研究は、さまざまな領域にわたる関連するモデルをトレーニングするための、より柔軟なツールを提供する。
論文 参考訳(メタデータ) (2023-07-05T15:55:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
データ分散のシフトを伴う環境での継続的な学習は、いくつかの現実世界のアプリケーションでは難しい問題である。
本稿では,この問題設定に対処するために,ベイシモデル(MoB)の混合方式を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:53:15Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - A Markov Decision Process Approach to Active Meta Learning [24.50189361694407]
教師付き学習では、データが特定のタスクに関連付けられていると仮定して、与えられたデータセットに1つの統計モデルを適用する。
メタラーニングでは、データは多数のタスクと関連付けられており、同時に全てのタスクでうまく機能するモデルを模索する。
論文 参考訳(メタデータ) (2020-09-10T15:45:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。