Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
- URL: http://arxiv.org/abs/2502.03664v1
- Date: Wed, 05 Feb 2025 23:15:31 GMT
- Title: Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
- Authors: Jiacheng Hu, Tai An, Zidong Yu, Junliang Du, Yuanshuai Luo,
- Abstract summary: This paper proposes a cold start recommendation model that integrates contrastive learning.
The model dynamically adjusts the weights of key features through an adaptive feature selection module.
It integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism.
- Score: 2.2194815687410627
- License:
- Abstract: This paper proposes a cold start recommendation model that integrates contrastive learning, aiming to solve the problem of performance degradation of recommendation systems in cold start scenarios due to the scarcity of user and item interaction data. The model dynamically adjusts the weights of key features through an adaptive feature selection module and effectively integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism, thereby improving recommendation performance. In addition, the model introduces a contrastive learning mechanism to enhance the robustness and generalization ability of feature representation by constructing positive and negative sample pairs. Experiments are conducted on the MovieLens-1M dataset. The results show that the proposed model significantly outperforms mainstream recommendation methods such as Matrix Factorization, LightGBM, DeepFM, and AutoRec in terms of HR, NDCG, MRR, and Recall, especially in cold start scenarios. Ablation experiments further verify the key role of each module in improving model performance, and the learning rate sensitivity analysis shows that a moderate learning rate is crucial to the optimization effect of the model. This study not only provides a new solution to the cold start problem but also provides an important reference for the application of contrastive learning in recommendation systems. In the future, this model is expected to play a role in a wider range of scenarios, such as real-time recommendation and cross-domain recommendation.
Related papers
- Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.
Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - "FRAME: Forward Recursive Adaptive Model Extraction -- A Technique for Advance Feature Selection" [0.0]
This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME)
FRAME combines Forward Selection and Recursive Feature Elimination to enhance feature selection across diverse datasets.
The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics.
arXiv Detail & Related papers (2025-01-21T08:34:10Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
We introduce a framework in which a model must determine the factors influencing a hidden reward function.
We investigate whether approaches such as self- throughput and increased inference time improve information gathering efficiency.
arXiv Detail & Related papers (2024-12-09T12:27:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - Explainable Recommendation Systems by Generalized Additive Models with
Manifest and Latent Interactions [3.022014732234611]
We propose the explainable recommendation systems based on a generalized additive model with manifest and latent interactions.
A new Python package GAMMLI is developed for efficient model training and visualized interpretation of the results.
arXiv Detail & Related papers (2020-12-15T10:29:12Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement
Learning [36.14516028564416]
This paper proposes an innovative Multiple Model Kalman Temporal Difference (MM-KTD) framework to learn optimal control policies.
An active learning method is proposed to enhance the sampling efficiency of the system.
Experimental results show superiority of the MM-KTD framework in comparison to its state-of-the-art counterparts.
arXiv Detail & Related papers (2020-05-30T06:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.