WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models
- URL: http://arxiv.org/abs/2202.13616v1
- Date: Mon, 28 Feb 2022 08:55:12 GMT
- Title: WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models
- Authors: Jingwei Zhuo, Bin Liu, Xiang Li, Han Zhu, Xiaoqiang Zhu
- Abstract summary: We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
- Score: 24.455665093145818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning the user-item relevance hidden in implicit feedback data plays an
important role in modern recommender systems. Neural sequential recommendation
models, which formulates learning the user-item relevance as a sequential
classification problem to distinguish items in future behaviors from others
based on the user's historical behaviors, have attracted a lot of interest in
both industry and academic due to their substantial practical value. Though
achieving many practical successes, we argue that the intrinsic {\bf
incompleteness} and {\bf inaccuracy} of user behaviors in implicit feedback
data is ignored and conduct preliminary experiments for supporting our claims.
Motivated by the observation that model-free methods like behavioral
retargeting (BR) and item-based collaborative filtering (ItemCF) hit different
parts of the user-item relevance compared to neural sequential recommendation
models, we propose a novel model-agnostic training approach called WSLRec,
which adopts a three-stage framework: pre-training, top-$k$ mining, and
fine-tuning. WSLRec resolves the incompleteness problem by pre-training models
on extra weak supervisions from model-free methods like BR and ItemCF, while
resolves the inaccuracy problem by leveraging the top-$k$ mining to screen out
reliable user-item relevance from weak supervisions for fine-tuning.
Experiments on two benchmark datasets and online A/B tests verify the
rationality of our claims and demonstrate the effectiveness of WSLRec.
Related papers
- Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models [2.0962367975513496]
Machine unlearning aims to efficiently eliminate the influence of specific training data, known as the forget set, from the model.
Existing unlearning methods rely solely on negative feedback to suppress responses related to the forget set.
We propose a novel approach called Alternate Preference Optimization (AltPO), which combines negative feedback with in-domain positive feedback on the forget set.
arXiv Detail & Related papers (2024-09-20T13:05:07Z) - Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems [17.10762463903638]
We train evaluation models to approximate human evaluation, achieving high agreement.
We propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model.
arXiv Detail & Related papers (2024-06-26T10:48:14Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - TDCGL: Two-Level Debiased Contrastive Graph Learning for Recommendation [1.5836776102398225]
Long-tailed distribution of entities of KG and noise issues in the real world make item-entity dependent relations deviate from reflecting true characteristics.
We design the Two-Level Debiased Contrastive Learning (TDCL) and deploy it in the knowledge graph.
Considerable experiments on open-source datasets demonstrate that our method has excellent anti-noise capability.
arXiv Detail & Related papers (2023-10-01T03:56:38Z) - Effective and Efficient Training for Sequential Recommendation using
Recency Sampling [91.02268704681124]
We propose a novel Recency-based Sampling of Sequences training objective.
We show that the models enhanced with our method can achieve performances exceeding or very close to stateof-the-art BERT4Rec.
arXiv Detail & Related papers (2022-07-06T13:06:31Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.