論文の概要: Advancing Reasoning in Large Language Models: Promising Methods and Approaches
- arxiv url: http://arxiv.org/abs/2502.03671v1
- Date: Wed, 05 Feb 2025 23:31:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:34:15.763616
- Title: Advancing Reasoning in Large Language Models: Promising Methods and Approaches
- Title(参考訳): 大規模言語モデルにおける推論の促進:手法とアプローチ
- Authors: Avinash Patil,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて著しく成功している。
複雑な推論スパンニング論理推論、数学的問題解決、コモンセンス推論、そして多段階推論を実行する能力は、人間の期待に届かない。
本調査は, LLMにおける推論向上技術に関する総合的なレビューを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて著しく成功したが、その推論能力は依然として根本的な課題である。
LLMは、顕著な急激さと事実的リコールを示す一方で、複雑な推論と拡大する論理的推論、数学的問題解決、コモンセンス推論、そして多段階の推論を行う能力は、人間の期待に届かなかった。
本調査は, LLMにおける推論向上技術に関する総合的なレビューを提供する。
既存の手法は、戦略(例えば、Chain-of-Thought推論、Self-Consistency、Tree-of-Thought推論)、アーキテクチャ革新(例えば、検索強化モデル、モジュラー推論ネットワーク、ニューロシンボリック統合)、学習パラダイム(例えば、推論固有のデータセットによる微調整、強化学習、自己管理推論目的)など、重要なアプローチに分類する。
さらに,LLMにおける推論の評価に使用される評価フレームワークについて検討し,幻覚,頑健性,多種多様なタスクにおける推論一般化などのオープンな課題を強調した。
近年の進歩をシンセサイズして、今後の研究に向けた将来的な方向性と、推論によるLCMの実践的応用に関する洞察を提供することを目的としている。
関連論文リスト
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Logical Reasoning in Large Language Models: A Survey [17.06712393613964]
大規模言語モデル(LLM)における論理的推論の最近の進歩を合成する。
LLMにおける論理的推論の範囲、理論的基礎、および推論の習熟度を評価するために使用されるベンチマークについて概説する。
このレビューは、AIシステムにおける論理的推論を強化するためのさらなる調査の必要性を強調し、今後の方向性を結論付けている。
論文 参考訳(メタデータ) (2025-02-13T09:19:14Z) - Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.13238566815798]
大規模言語モデル(LLM)は、複雑な推論タスクに対処するためにそれらを活用することに大きな研究の関心を呼んだ。
最近の研究は、LLMがテスト時間推論中により多くのトークンで"考える"ことを奨励することは、推論の精度を著しく向上させることを示した。
OpenAIのo1シリーズの導入は、この研究の方向性において重要なマイルストーンである。
論文 参考訳(メタデータ) (2025-01-16T17:37:58Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
本研究では,大規模言語モデルの推論能力を高めるための学習信号としてグラフベースの合成推論データを使用することの可能性と限界について検討する。
2つの確立された自然言語推論タスクにおいて,合成グラフに基づく推論データによる教師付き微調整が,他の標準評価ベンチマークでの有効性を損なうことなく,LLMの推論性能を効果的に向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T03:39:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
本稿では,Large Language Models (LLMs) のパズル解法における能力について検討する。
以上の結果から,LLM能力と人為的推論の相違が明らかとなった。
この調査は、LLMのパズル解決能力を向上させるために、新しい戦略とよりリッチなデータセットの必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-17T14:19:38Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。