Iterate to Accelerate: A Unified Framework for Iterative Reasoning and Feedback Convergence
- URL: http://arxiv.org/abs/2502.03787v1
- Date: Thu, 06 Feb 2025 05:24:35 GMT
- Title: Iterate to Accelerate: A Unified Framework for Iterative Reasoning and Feedback Convergence
- Authors: Jacob Fein-Ashley,
- Abstract summary: We introduce a unified framework for iterative reasoning that leverages non-Euclidean geometry via Bregman divergences, higher-order operator averaging, and adaptive feedback mechanisms.
Our analysis establishes that, under mild smoothness and contractivity assumptions, a generalized update scheme not only unifies classical methods such as mirror descent and dynamic programming but also captures modern chain-of-thought reasoning processes in large language models.
- Score: 0.0
- License:
- Abstract: We introduce a unified framework for iterative reasoning that leverages non-Euclidean geometry via Bregman divergences, higher-order operator averaging, and adaptive feedback mechanisms. Our analysis establishes that, under mild smoothness and contractivity assumptions, a generalized update scheme not only unifies classical methods such as mirror descent and dynamic programming but also captures modern chain-of-thought reasoning processes in large language models. In particular, we prove that our accelerated iterative update achieves an $O(1/t^2)$ convergence rate in the absence of persistent perturbations, and we further demonstrate that feedback (iterative) architectures are necessary to approximate certain fixed-point functions efficiently. These theoretical insights bridge classical acceleration techniques with contemporary applications in neural computation and optimization.
Related papers
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.
We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Unraveling Zeroth-Order Optimization through the Lens of Low-Dimensional Structured Perturbations [33.38543010618118]
Zeroth-order (ZO) optimization has emerged as a promising alternative to gradient-based backpropagation methods.
We show that high dimensionality is the primary bottleneck and introduce the notions of textit and textiteffective perturbations to explain how structured perturbations reduce gradient noise and accelerate convergence.
arXiv Detail & Related papers (2025-01-31T12:46:04Z) - A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs [0.0]
We present a physics-informed neural network (PINN) approach for the discovery of slow invariant manifold (SIMs)
In contrast to other machine learning (ML) approaches that construct reduced order black box surrogate models, our approach, simultaneously decomposes the vector field into fast and slow components.
We show that the proposed PINN scheme provides SIM approximations, of equivalent or even higher accuracy, than those provided by QSSA, PEA and CSP.
arXiv Detail & Related papers (2024-03-18T09:10:39Z) - Multiplicative update rules for accelerating deep learning training and
increasing robustness [69.90473612073767]
We propose an optimization framework that fits to a wide range of machine learning algorithms and enables one to apply alternative update rules.
We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule.
arXiv Detail & Related papers (2023-07-14T06:44:43Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
It is thought that adaptive optimization algorithms represent the key pillar behind the of the Learning field.
In this paper we introduce adaptive momentum techniques for different non-smooth objective problems.
arXiv Detail & Related papers (2021-10-16T09:47:57Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Deep Equilibrium Architectures for Inverse Problems in Imaging [14.945209750917483]
Recent efforts on solving inverse problems in imaging via deep neural networks use architectures inspired by a fixed number of iterations of an optimization method.
This paper describes an alternative approach corresponding to an em infinite number of iterations, yielding up to a 4dB PSNR improvement in reconstruction accuracy.
arXiv Detail & Related papers (2021-02-16T03:49:58Z) - Acceleration Methods [57.202881673406324]
We first use quadratic optimization problems to introduce two key families of acceleration methods.
We discuss momentum methods in detail, starting with the seminal work of Nesterov.
We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates.
arXiv Detail & Related papers (2021-01-23T17:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.