Unraveling Zeroth-Order Optimization through the Lens of Low-Dimensional Structured Perturbations
- URL: http://arxiv.org/abs/2501.19099v1
- Date: Fri, 31 Jan 2025 12:46:04 GMT
- Title: Unraveling Zeroth-Order Optimization through the Lens of Low-Dimensional Structured Perturbations
- Authors: Sihwan Park, Jihun Yun, SungYub Kim, Souvik Kundu, Eunho Yang,
- Abstract summary: Zeroth-order (ZO) optimization has emerged as a promising alternative to gradient-based backpropagation methods.
We show that high dimensionality is the primary bottleneck and introduce the notions of textit and textiteffective perturbations to explain how structured perturbations reduce gradient noise and accelerate convergence.
- Score: 33.38543010618118
- License:
- Abstract: Zeroth-order (ZO) optimization has emerged as a promising alternative to gradient-based backpropagation methods, particularly for black-box optimization and large language model (LLM) fine-tuning. However, ZO methods suffer from slow convergence due to high-variance stochastic gradient estimators. While structured perturbations, such as sparsity and low-rank constraints, have been explored to mitigate these issues, their effectiveness remains highly under-explored. In this work, we develop a unified theoretical framework that analyzes both the convergence and generalization properties of ZO optimization under structured perturbations. We show that high dimensionality is the primary bottleneck and introduce the notions of \textit{stable rank} and \textit{effective overlap} to explain how structured perturbations reduce gradient noise and accelerate convergence. Using the uniform stability under our framework, we then provide the first theoretical justification for why these perturbations enhance generalization. Additionally, through empirical analysis, we identify that \textbf{block coordinate descent} (BCD) to be an effective structured perturbation method. Extensive experiments show that, compared to existing alternatives, memory-efficient ZO (MeZO) with BCD (\textit{MeZO-BCD}) can provide improved converge with a faster wall-clock time/iteration by up to $\times\textbf{2.09}$ while yielding similar or better accuracy.
Related papers
- Iterate to Accelerate: A Unified Framework for Iterative Reasoning and Feedback Convergence [0.0]
We introduce a unified framework for iterative reasoning that leverages non-Euclidean geometry via Bregman divergences, higher-order operator averaging, and adaptive feedback mechanisms.
Our analysis establishes that, under mild smoothness and contractivity assumptions, a generalized update scheme not only unifies classical methods such as mirror descent and dynamic programming but also captures modern chain-of-thought reasoning processes in large language models.
arXiv Detail & Related papers (2025-02-06T05:24:35Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
We introduce PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates), a suite of sketching-based preconditioned gradient algorithms.
PROMISE includes preconditioned versions of SVRG, SAGA, and Katyusha.
arXiv Detail & Related papers (2023-09-05T07:49:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - SCORE: Approximating Curvature Information under Self-Concordant
Regularization [0.0]
We propose a generalized Gauss-Newton with Self-Concordant Regularization (GGN-SCORE) algorithm that updates the minimization speed each time it receives a new input.
The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing computational overhead.
arXiv Detail & Related papers (2021-12-14T13:03:04Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
Recent methods have significantly reduced the performance of Binary Neural Networks (BNNs)
guaranteeing the effective and efficient training of BNNs is an unsolved problem.
We propose a BAMSProd algorithm with a key observation that the convergence property of optimizing deep binary model is strongly related to the quantization errors.
arXiv Detail & Related papers (2020-09-29T06:12:32Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.