論文の概要: Adaptation of Task Goal States from Prior Knowledge
- arxiv url: http://arxiv.org/abs/2502.03918v1
- Date: Thu, 06 Feb 2025 09:51:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:43.437581
- Title: Adaptation of Task Goal States from Prior Knowledge
- Title(参考訳): タスク目標状態の事前知識からの適応
- Authors: Andrei Costinescu, Darius Burschka,
- Abstract要約: 目標状態における自由と可変性を備えたタスクを定義するためのフレームワークを定義します。
ロボットは、これを使ってタスクの実行を観察し、観察されたタスクとは異なる目標を目標にすることができる。
- 参考スコア(独自算出の注目度): 1.098383730564372
- License:
- Abstract: This paper presents a framework to define a task with freedom and variability in its goal state. A robot could use this to observe the execution of a task and target a different goal from the observed one; a goal that is still compatible with the task description but would be easier for the robot to execute. We define the model of an environment state and an environment variation, and present experiments on how to interactively create the variation from a single task demonstration and how to use this variation to create an execution plan for bringing any environment into the goal state.
- Abstract(参考訳): 本稿では,目標状態における自由度と可変性を備えたタスクを定義する枠組みを提案する。
ロボットはこれを使ってタスクの実行を観察し、観察されたタスクと異なる目標を目標にすることができる。
本研究では、環境状態と環境変動のモデルを定義し、単一タスクのデモンストレーションから変動をインタラクティブに生成する方法と、この変動を用いて、任意の環境を目標状態に導入するための実行計画を作成する方法について実験する。
関連論文リスト
- Planning with affordances: Integrating learned affordance models and symbolic planning [0.0]
既存のタスク・アンド・モーション・プランニング・フレームワークを世界のオブジェクトの学習能力モデルで拡張する。
それぞれのタスクは、世界の現在の状態を所定の目標状態に変更したものと見なすことができます。
シンボリックプランニングアルゴリズムは、この情報と開始および目標状態を用いて、望ましい目標状態に到達するための実行可能なプランを作成する。
論文 参考訳(メタデータ) (2025-02-04T23:15:38Z) - Imagination Policy: Using Generative Point Cloud Models for Learning Manipulation Policies [25.760946763103483]
Imagination Policy(Imagination Policy)は,高精度ピック・アンド・プレイス・タスクを解くための新しいマルチタスク・キー・フレーム・ポリシー・ネットワークである。
アクションを直接学習する代わりに、Imagination Policy は所望の状態を想像するために点雲を生成し、それが厳密なアクション推定を用いてアクションに変換される。
論文 参考訳(メタデータ) (2024-06-17T17:00:41Z) - MANER: Multi-Agent Neural Rearrangement Planning of Objects in Cluttered
Environments [8.15681999722805]
本稿では,マルチエージェントオブジェクトアレンジメント計画のための学習ベースのフレームワークを提案する。
複雑な環境におけるタスクシークエンシングとパス計画の課題に対処する。
論文 参考訳(メタデータ) (2023-06-10T23:53:28Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Zero-shot Task Adaptation using Natural Language [43.807555235240365]
本稿では,エージェントにデモンストレーションと説明の両方を付与する,新しい環境を提案する。
テンプレートベースの記述を使用すれば,目標タスクの95%以上を達成できる。
論文 参考訳(メタデータ) (2021-06-05T21:39:04Z) - Rearrangement: A Challenge for Embodied AI [229.8891614821016]
Embodied AIの研究と評価のためのフレームワークについて述べる。
我々の提案は正統的な課題である再配置に基づいている。
4つの異なるシミュレーション環境における再配置シナリオの実験的なテストベッドについて述べる。
論文 参考訳(メタデータ) (2020-11-03T19:42:32Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Adaptive Procedural Task Generation for Hard-Exploration Problems [78.20918366839399]
ハード探索問題における強化学習を容易にするために,適応手続きタスク生成(APT-Gen)を導入する。
私たちのアプローチの中心は、ブラックボックスの手続き生成モジュールを通じてパラメータ化されたタスク空間からタスクを作成することを学習するタスクジェネレータです。
学習進捗の直接指標がない場合のカリキュラム学習を可能にするために,生成したタスクにおけるエージェントのパフォーマンスと,対象タスクとの類似性をバランスさせてタスクジェネレータを訓練することを提案する。
論文 参考訳(メタデータ) (2020-07-01T09:38:51Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z) - Generating Automatic Curricula via Self-Supervised Active Domain
Randomization [11.389072560141388]
我々は、目標と環境のカリキュラムを共同で学習するために、セルフプレイフレームワークを拡張します。
本手法は, エージェントがより困難なタスクや環境変化から学習する, ゴールタスクの複合カリキュラムを生成する。
本結果から,各環境に設定された目標の難易度とともに,環境の難易度を両立させるカリキュラムが,テスト対象の目標指向タスクに実用的利益をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-02-18T22:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。