Non-convex composite federated learning with heterogeneous data
- URL: http://arxiv.org/abs/2502.03958v1
- Date: Thu, 06 Feb 2025 10:49:03 GMT
- Title: Non-convex composite federated learning with heterogeneous data
- Authors: Jiaojiao Zhang, Jiang Hu, Mikael Johansson,
- Abstract summary: We propose an innovative algorithm for non-linear composite learning that decouples the proximal operator evaluation and the communication between server and client.
We demonstrate the superiority our algorithm over state-of-the-art methods both synthetic and real datasets.
- Score: 10.14896454396227
- License:
- Abstract: We propose an innovative algorithm for non-convex composite federated learning that decouples the proximal operator evaluation and the communication between server and clients. Moreover, each client uses local updates to communicate less frequently with the server, sends only a single d-dimensional vector per communication round, and overcomes issues with client drift. In the analysis, challenges arise from the use of decoupling strategies and local updates in the algorithm, as well as from the non-convex and non-smooth nature of the problem. We establish sublinear and linear convergence to a bounded residual error under general non-convexity and the proximal Polyak-Lojasiewicz inequality, respectively. In the numerical experiments, we demonstrate the superiority of our algorithm over state-of-the-art methods on both synthetic and real datasets.
Related papers
- Non-Convex Optimization in Federated Learning via Variance Reduction and Adaptive Learning [13.83895180419626]
This paper proposes a novel algorithm that leverages momentum-based variance reduction with adaptive learning to address non-epsilon settings across heterogeneous data.
We aim to overcome challenges related to variance, hinders efficiency, and the slow convergence from learning rate adjustments with heterogeneous data.
arXiv Detail & Related papers (2024-12-16T11:02:38Z) - Composite federated learning with heterogeneous data [11.40641907024708]
We propose a novel algorithm for solving the composite Federated Learning (FL) problem.
This algorithm manages non-smooth regularization by strategically decoupling the proximal operator and communication, and addresses client drift without any assumptions about data similarity.
We prove that our algorithm converges linearly to a neighborhood of the optimal solution and demonstrate the superiority of our algorithm over state-of-the-art methods in numerical experiments.
arXiv Detail & Related papers (2023-09-04T20:22:57Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - FedChain: Chained Algorithms for Near-Optimal Communication Cost in
Federated Learning [24.812767482563878]
Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients.
We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R.
arXiv Detail & Related papers (2021-08-16T02:57:06Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Federated Learning with Compression: Unified Analysis and Sharp
Guarantees [39.092596142018195]
Communication cost is often a critical bottleneck to scale up distributed optimization algorithms to collaboratively learn a model from millions of devices.
Two notable trends to deal with the communication overhead of federated compression and computation are unreliable compression and heterogeneous communication.
We analyze their convergence in both homogeneous and heterogeneous data distribution settings.
arXiv Detail & Related papers (2020-07-02T14:44:07Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.