AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations
- URL: http://arxiv.org/abs/2502.03963v1
- Date: Thu, 06 Feb 2025 10:54:28 GMT
- Title: AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations
- Authors: Keon Vin Park,
- Abstract summary: Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solving Partial Differential Equations (PDEs)
We propose Active Learning-Driven PINNs (AL-PINN), which integrates Uncertainty Quantification (UQ) and Active Learning strategies to optimize sample selection dynamically.
Our results demonstrate that AL-PINN achieves comparable or superior accuracy compared to traditional PINNs while reducing the number of required training samples.
- Score: 0.0
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solving Partial Differential Equations (PDEs) by incorporating physical constraints into deep learning models. However, standard PINNs often require a large number of training samples to achieve high accuracy, leading to increased computational costs. To address this issue, we propose Active Learning-Driven PINNs (AL-PINN), which integrates Uncertainty Quantification (UQ) and Active Learning (AL) strategies to optimize sample selection dynamically. AL-PINN utilizes Monte Carlo Dropout to estimate epistemic uncertainty in the model predictions, enabling the adaptive selection of high-uncertainty regions for additional training. This approach significantly enhances learning efficiency by focusing computational resources on the most informative data points. We evaluate AL-PINN on benchmark PDE problems with known analytical solutions and real-world WeatherBench climate data. Our results demonstrate that AL-PINN achieves comparable or superior accuracy compared to traditional PINNs while reducing the number of required training samples. The proposed framework is particularly beneficial for scientific and engineering applications where data collection is expensive or limited, such as climate modeling, medical simulations, and material science. Our findings highlight the potential of active learning in accelerating PINN-based PDE solvers while maintaining high accuracy and computational efficiency.
Related papers
- Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical laws into neural network training.
In this work, we explore the potential of a foundation PINN model capable of solving multiple PDEs within a unified architecture.
arXiv Detail & Related papers (2025-02-11T10:12:28Z) - Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations [0.0]
We investigate the use of learnable activation functions in Physics-Informed Networks (PINNs) for solving Partial Differential Equations (PDEs)
We compare the efficacy of traditional Multilayer Perceptrons (MLPs) with fixed and learnable activations against Kolmogorov-Arnold Neural Networks (KANs)
The findings offer insights into the design of neural network architectures that balance training efficiency, convergence speed, and test accuracy for PDE solvers.
arXiv Detail & Related papers (2024-11-22T18:25:13Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs) to be considered as one such solver.
PINNs have pioneered a proper integration of deep-learning and scientific computing, but they require repetitive time-consuming training of neural networks.
We propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm.
arXiv Detail & Related papers (2023-10-14T08:13:43Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm
Optimization [0.0]
We propose the use of a hybrid particle swarm optimization and gradient descent approach to train PINNs.
The resulting PSO-PINN algorithm mitigates the undesired behaviors of PINNs trained with standard gradient descent.
Experimental results show that PSO-PINN consistently outperforms a baseline PINN trained with Adam gradient descent.
arXiv Detail & Related papers (2022-02-04T02:21:31Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.