PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm
Optimization
- URL: http://arxiv.org/abs/2202.01943v1
- Date: Fri, 4 Feb 2022 02:21:31 GMT
- Title: PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm
Optimization
- Authors: Caio Davi and Ulisses Braga-Neto
- Abstract summary: We propose the use of a hybrid particle swarm optimization and gradient descent approach to train PINNs.
The resulting PSO-PINN algorithm mitigates the undesired behaviors of PINNs trained with standard gradient descent.
Experimental results show that PSO-PINN consistently outperforms a baseline PINN trained with Adam gradient descent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Physics-informed neural networks (PINNs) have recently emerged as a promising
application of deep learning in a wide range of engineering and scientific
problems based on partial differential equation models. However, evidence shows
that PINN training by gradient descent displays pathologies and stiffness in
gradient flow dynamics. In this paper, we propose the use of a hybrid particle
swarm optimization and gradient descent approach to train PINNs. The resulting
PSO-PINN algorithm not only mitigates the undesired behaviors of PINNs trained
with standard gradient descent, but also presents an ensemble approach to PINN
that affords the possibility of robust predictions with quantified uncertainty.
Experimental results using the Poisson, advection, and Burgers equations show
that PSO-PINN consistently outperforms a baseline PINN trained with Adam
gradient descent.
Related papers
- Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques.
PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities.
This paper presents an improved PINN to mitigate gradient-related failures.
arXiv Detail & Related papers (2024-07-28T07:58:10Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
We present a new training paradigm referred to as "gradient boosting" (GB)
Instead of learning the solution of a given PDE using a single neural network directly, our algorithm employs a sequence of neural networks to achieve a superior outcome.
This work also unlocks the door to employing ensemble learning techniques in PINNs.
arXiv Detail & Related papers (2023-02-25T19:11:44Z) - Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and
Comparative Results [25.12291688711645]
Physics-informed neural networks (PINNs) are one of the key techniques at the forefront of recent advances.
PINNs' unique loss formulations lead to a high degree of complexity and ruggedness that may not be conducive for gradient descent.
Neuroevolution algorithms, with their superior global search capacity, may be a better choice for PINNs.
arXiv Detail & Related papers (2022-12-15T05:54:16Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Gradient-enhanced physics-informed neural networks for forward and
inverse PDE problems [2.0062792633909026]
Deep learning has been shown to be an effective tool in solving partial differential equations (PDEs) through physics-informed neural networks (PINNs)
PINNs embed the PDE residual into the loss function of the neural network, and have been successfully employed to solve diverse forward and inverse PDE problems.
Here, we propose a new method, gradient-enhanced physics-informed neural networks (gPINNs) for improving the accuracy and training efficiency of PINNs.
arXiv Detail & Related papers (2021-11-01T18:01:38Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.