Variational Quantum Optimization with Continuous Bandits
- URL: http://arxiv.org/abs/2502.04021v1
- Date: Thu, 06 Feb 2025 12:24:30 GMT
- Title: Variational Quantum Optimization with Continuous Bandits
- Authors: Marc Wanner, Johan Jonasson, Emil Carlsson, Devdatt Dubhashi,
- Abstract summary: We introduce a novel approach to variational Quantum algorithms (VQA) via continuous bandits.
VQA are a class of hybrid Quantum-classical algorithms where the parameters of Quantum circuits are optimized by classical algorithms.
- Score: 1.6686882054452727
- License:
- Abstract: We introduce a novel approach to variational Quantum algorithms (VQA) via continuous bandits. VQA are a class of hybrid Quantum-classical algorithms where the parameters of Quantum circuits are optimized by classical algorithms. Previous work has used zero and first order gradient based methods, however such algorithms suffer from the barren plateau (BP) problem where gradients and loss differences are exponentially small. We introduce an approach using bandits methods which combine global exploration with local exploitation. We show how VQA can be formulated as a best arm identification problem in a continuous space of arms with Lipschitz smoothness. While regret minimization has been addressed in this setting, existing methods for pure exploration only cover discrete spaces. We give the first results for pure exploration in a continuous setting and derive a fixed-confidence, information-theoretic, instance specific lower bound. Under certain assumptions on the expected payoff, we derive a simple algorithm, which is near-optimal with respect to our lower bound. Finally, we apply our continuous bandit algorithm to two VQA schemes: a PQC and a QAOA quantum circuit, showing that we significantly outperform the previously known state of the art methods (which used gradient based methods).
Related papers
- Quantum Bayesian Optimization [64.58749619145908]
We introduce the quantum-Gaussian process-upper confidence bound (Q-GP-UCB) algorithm.
It is the first BO algorithm able to achieve a regret upper bound of O(polylog T), which is significantly smaller than its regret lower bound of Omega(sqrt(T)) in the classical setting.
Thanks to our novel analysis of the confidence ellipsoid, our Q-GP-UCB with the linear kernel achieves a smaller regret than the quantum linear UCB algorithm.
arXiv Detail & Related papers (2023-10-09T03:10:42Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum
Neural Networks [11.844238544360149]
Vari quantum algorithms (VQAs) have recently received significant attention due to their promising performance in Noisy Intermediate-Scale Quantum computers (NISQ)
VQAs run on parameterized quantum circuits (PQC) with randomlyational parameters are characterized by barren plateaus (BP) where the gradient vanishes exponentially in the number of qubits.
In this paper, we first quantum natural gradient (QNG), which is one of the most popular algorithms used in VQA, from the classical first-order point of optimization.
Then, we proposed a underlineAround underline
arXiv Detail & Related papers (2022-05-05T14:16:40Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - An optimal quantum sampling regression algorithm for variational
eigensolving in the low qubit number regime [0.0]
We introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm.
We analyze some of its use cases based on time complexity in the low qubit number regime.
We demonstrate the efficacy of our algorithm for a benchmark problem.
arXiv Detail & Related papers (2020-12-04T00:01:15Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
In this work, we adapt the integral quadratic constraints theory to first-order methods for smooth and strongly-varying games and iteration.
We provide emphfor the first time a global convergence rate for the negative momentum method(NM) with an complexity $mathcalO(kappa1.5)$, which matches its known lower bound.
We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch.
arXiv Detail & Related papers (2020-09-23T20:02:00Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Corruption-Tolerant Gaussian Process Bandit Optimization [130.60115798580136]
We consider the problem of optimizing an unknown (typically non-producing) function with a bounded norm.
We introduce an algorithm based on Fast-Slow GP-UCB based on "fast but non-robust" and "slow"
We argue that certain dependencies cannot be required depending on the corruption level.
arXiv Detail & Related papers (2020-03-04T09:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.