Optimizing Perturbations for Improved Training of Machine Learning Models
- URL: http://arxiv.org/abs/2502.04121v1
- Date: Thu, 06 Feb 2025 14:53:21 GMT
- Title: Optimizing Perturbations for Improved Training of Machine Learning Models
- Authors: Sagi Meir, Tommer D. Keidar, Shlomi Reuveni, Barak Hirshberg,
- Abstract summary: We show that if the unperturbed learning process reaches a quasi-steady state, the response at a single perturbation frequency can predict the behavior at a wide range of frequencies.
Our work allows optimization of training protocols of machine learning models using a statistical mechanical approach.
- Score: 0.0
- License:
- Abstract: Machine learning models have become indispensable tools in applications across the physical sciences. Their training is often time-consuming, vastly exceeding the inference timescales. Several protocols have been developed to perturb the learning process and improve the training, such as shrink and perturb, warm restarts, and stochastic resetting. For classifiers, these perturbations have been shown to result in enhanced speedups or improved generalization. However, the design of such perturbations is usually done \textit{ad hoc} by intuition and trial and error. To rationally optimize training protocols, we frame them as first-passage processes and consider their response to perturbations. We show that if the unperturbed learning process reaches a quasi-steady state, the response at a single perturbation frequency can predict the behavior at a wide range of frequencies. We demonstrate that this is the case when training a CIFAR-10 classifier using the ResNet-18 model and use this approach to identify an optimal perturbation and frequency. Our work allows optimization of training protocols of machine learning models using a statistical mechanical approach.
Related papers
- Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference [22.106900089984318]
Realtime environments change even as agents perform action inference and learning.
Recent advances in machine learning involve larger neural networks with longer inference times.
We present an analysis of lower bounds on regret in realtime reinforcement learning.
arXiv Detail & Related papers (2024-12-18T21:43:40Z) - A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
We propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy.
We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously.
arXiv Detail & Related papers (2024-09-11T20:43:59Z) - Always-Sparse Training by Growing Connections with Guided Stochastic
Exploration [46.4179239171213]
We propose an efficient always-sparse training algorithm with excellent scaling to larger and sparser models.
We evaluate our method on CIFAR-10/100 and ImageNet using VGG, and ViT models, and compare it against a range of sparsification methods.
arXiv Detail & Related papers (2024-01-12T21:32:04Z) - Accelerating Multiframe Blind Deconvolution via Deep Learning [0.0]
Ground-based solar image restoration is a computationally expensive procedure.
We propose a new method to accelerate the restoration based on algorithm unrolling.
We show that both methods significantly reduce the restoration time compared to the standard optimization procedure.
arXiv Detail & Related papers (2023-06-21T07:53:00Z) - Dynamic Scheduled Sampling with Imitation Loss for Neural Text
Generation [10.306522595622651]
We introduce Dynamic Scheduled Sampling with Imitation Loss (DySI), which maintains the schedule based solely on the training time accuracy.
DySI achieves notable improvements on standard machine translation benchmarks, and significantly improves the robustness of other text generation models.
arXiv Detail & Related papers (2023-01-31T16:41:06Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Effective and Efficient Training for Sequential Recommendation using
Recency Sampling [91.02268704681124]
We propose a novel Recency-based Sampling of Sequences training objective.
We show that the models enhanced with our method can achieve performances exceeding or very close to stateof-the-art BERT4Rec.
arXiv Detail & Related papers (2022-07-06T13:06:31Z) - Efficient Sub-structured Knowledge Distillation [52.5931565465661]
We propose an approach that is much simpler in its formulation and far more efficient for training than existing approaches.
We transfer the knowledge from a teacher model to its student model by locally matching their predictions on all sub-structures, instead of the whole output space.
arXiv Detail & Related papers (2022-03-09T15:56:49Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Overfitting in adversarially robust deep learning [86.11788847990783]
We show that overfitting to the training set does in fact harm robust performance to a very large degree in adversarially robust training.
We also show that effects such as the double descent curve do still occur in adversarially trained models, yet fail to explain the observed overfitting.
arXiv Detail & Related papers (2020-02-26T15:40:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.