Provably Robust Explainable Graph Neural Networks against Graph Perturbation Attacks
- URL: http://arxiv.org/abs/2502.04224v1
- Date: Thu, 06 Feb 2025 17:07:52 GMT
- Title: Provably Robust Explainable Graph Neural Networks against Graph Perturbation Attacks
- Authors: Jiate Li, Meng Pang, Yun Dong, Jinyuan Jia, Binghui Wang,
- Abstract summary: Graph Neural Network (XGNN) has gained growing attention to facilitate the trust of using GNNs.
Existing XGNNs focus on improving the explanation performance, and its robustness under attacks is largely unexplored.
We propose XGNNCert, the first provably robust XGNN against graph perturbation attacks.
- Score: 39.9987140075811
- License:
- Abstract: Explaining Graph Neural Network (XGNN) has gained growing attention to facilitate the trust of using GNNs, which is the mainstream method to learn graph data. Despite their growing attention, Existing XGNNs focus on improving the explanation performance, and its robustness under attacks is largely unexplored. We noticed that an adversary can slightly perturb the graph structure such that the explanation result of XGNNs is largely changed. Such vulnerability of XGNNs could cause serious issues particularly in safety/security-critical applications. In this paper, we take the first step to study the robustness of XGNN against graph perturbation attacks, and propose XGNNCert, the first provably robust XGNN. Particularly, our XGNNCert can provably ensure the explanation result for a graph under the worst-case graph perturbation attack is close to that without the attack, while not affecting the GNN prediction, when the number of perturbed edges is bounded. Evaluation results on multiple graph datasets and GNN explainers show the effectiveness of XGNNCert.
Related papers
- Graph Neural Network Explanations are Fragile [39.9987140075811]
We take the first step to study GNN explainers under adversarial attack.
We find that an adversary slightly perturbing graph structure can ensure GNN model makes correct predictions, but the GNN explainer yields a drastically different explanation on the perturbed graph.
arXiv Detail & Related papers (2024-06-05T12:23:02Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
Graph neural networks (GNNs) are provably successful at learning representations from data supported on moderate-scale graphs.
We study the problem of training GNNs on graphs of moderate size and transferring them to large-scale graphs.
Our results show that (i) the transference error decreases with the graph size, and (ii) that graph filters have a transferability-discriminability tradeoff that in GNNs is alleviated by the scattering behavior of the nonlinearity.
arXiv Detail & Related papers (2021-12-09T00:08:09Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.