Deterministic Certification of Graph Neural Networks against Graph Poisoning Attacks with Arbitrary Perturbations
- URL: http://arxiv.org/abs/2503.18503v1
- Date: Mon, 24 Mar 2025 09:59:44 GMT
- Title: Deterministic Certification of Graph Neural Networks against Graph Poisoning Attacks with Arbitrary Perturbations
- Authors: Jiate Li, Meng Pang, Yun Dong, Binghui Wang,
- Abstract summary: Graph neural networks (GNNs) are becoming the de facto method to learn on the graph data.<n>GNNs are vulnerable to training-time poisoning attacks.<n>We develop PGNNCert, the first certified defense of GNNs against poisoning attacks.
- Score: 16.087737575194225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) are becoming the de facto method to learn on the graph data and have achieved the state-of-the-art on node and graph classification tasks. However, recent works show GNNs are vulnerable to training-time poisoning attacks -- marginally perturbing edges, nodes, or/and node features of training graph(s) can largely degrade GNNs' testing performance. Most previous defenses against graph poisoning attacks are empirical and are soon broken by adaptive / stronger ones. A few provable defenses provide robustness guarantees, but have large gaps when applied in practice: 1) restrict the attacker on only one type of perturbation; 2) design for a particular GNN architecture or task; and 3) robustness guarantees are not 100\% accurate. In this work, we bridge all these gaps by developing PGNNCert, the first certified defense of GNNs against poisoning attacks under arbitrary (edge, node, and node feature) perturbations with deterministic robustness guarantees. Extensive evaluations on multiple node and graph classification datasets and GNNs demonstrate the effectiveness of PGNNCert to provably defend against arbitrary poisoning perturbations. PGNNCert is also shown to significantly outperform the state-of-the-art certified defenses against edge perturbation or node perturbation during GNN training.
Related papers
- AGNNCert: Defending Graph Neural Networks against Arbitrary Perturbations with Deterministic Certification [14.288781140044465]
Graph neural networks (GNNs) are vulnerable to adversarial perturbations.<n>AGNNCert is the first certified defense for GNNs against arbitrary (edge, node, and node feature) perturbations.
arXiv Detail & Related papers (2025-02-02T11:56:42Z) - Grimm: A Plug-and-Play Perturbation Rectifier for Graph Neural Networks Defending against Poisoning Attacks [53.972077392749185]
Recent studies have revealed the vulnerability of graph neural networks (GNNs) to adversarial poisoning attacks on node classification tasks.<n>Here we introduce Grimm, the first plug-and-play defense model.
arXiv Detail & Related papers (2024-12-11T17:17:02Z) - Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data.
Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks.
This paper conducts a comprehensive privacy analysis of inductive GNNs through the lens of link stealing attacks.
arXiv Detail & Related papers (2024-05-09T14:03:52Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
We propose the Graph Agent Network (GAgN) to address the vulnerabilities of graph neural networks (GNNs)<n>GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent.<n>Agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks.
arXiv Detail & Related papers (2023-06-12T07:27:31Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
Graph Neural Networks (GNNs) are generalizations of neural networks to graph-structured data.
GNNs are vulnerable to adversarial attacks, i.e., a small perturbation to the structure can lead to a non-trivial performance degradation.
We propose Uncertainty Matching GNN (UM-GNN), that is aimed at improving the robustness of GNN models.
arXiv Detail & Related papers (2020-09-30T05:29:42Z) - GNNGuard: Defending Graph Neural Networks against Adversarial Attacks [16.941548115261433]
We develop GNNGuard, an algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure.
GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes.
Experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average.
arXiv Detail & Related papers (2020-06-15T06:07:46Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
Adversary attacks can be easily fooled by small perturbation on the input.
Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability.
In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods.
arXiv Detail & Related papers (2020-03-02T04:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.