Work in Progress: AI-Powered Engineering-Bridging Theory and Practice
- URL: http://arxiv.org/abs/2502.04256v1
- Date: Thu, 06 Feb 2025 17:42:00 GMT
- Title: Work in Progress: AI-Powered Engineering-Bridging Theory and Practice
- Authors: Oz Levy, Ilya Dikman, Natan Levy, Michael Winokur,
- Abstract summary: This paper explores how generative AI can help automate and improve key steps in systems engineering.
It examines AI's ability to analyze system requirements based on INCOSE's "good requirement" criteria.
The research aims to assess AI's potential to streamline engineering processes and improve learning outcomes.
- Score: 0.0
- License:
- Abstract: This paper explores how generative AI can help automate and improve key steps in systems engineering. It examines AI's ability to analyze system requirements based on INCOSE's "good requirement" criteria, identifying well-formed and poorly written requirements. The AI does not just classify requirements but also explains why some do not meet the standards. By comparing AI assessments with those of experienced engineers, the study evaluates the accuracy and reliability of AI in identifying quality issues. Additionally, it explores AI's ability to classify functional and non-functional requirements and generate test specifications based on these classifications. Through both quantitative and qualitative analysis, the research aims to assess AI's potential to streamline engineering processes and improve learning outcomes. It also highlights the challenges and limitations of AI, ensuring its safe and ethical use in professional and academic settings.
Related papers
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
It is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards.
The issue of the trustworthiness of AI applications is crucial and is the subject of numerous major publications.
This AI assessment catalog addresses exactly this point and is intended for two target groups.
arXiv Detail & Related papers (2023-06-20T08:07:18Z) - MAILS -- Meta AI Literacy Scale: Development and Testing of an AI
Literacy Questionnaire Based on Well-Founded Competency Models and
Psychological Change- and Meta-Competencies [6.368014180870025]
The questionnaire should be modular (i.e., including different facets that can be used independently of each other) to be flexibly applicable in professional life.
We derived 60 items to represent different facets of AI Literacy according to Ng and colleagues conceptualisation of AI literacy.
Additional 12 items to represent psychological competencies such as problem solving, learning, and emotion regulation in regard to AI.
arXiv Detail & Related papers (2023-02-18T12:35:55Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Estimating the Brittleness of AI: Safety Integrity Levels and the Need
for Testing Out-Of-Distribution Performance [0.0]
Test, Evaluation, Verification, and Validation for Artificial Intelligence (AI) is a challenge that threatens to limit the economic and societal rewards that AI researchers have devoted themselves to producing.
This paper argues that neither of those criteria are certain of Deep Neural Networks.
arXiv Detail & Related papers (2020-09-02T03:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.